[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

Use of Biotechnology Devices to Analyse Fatigue Process in Swimming Training

Published: 01 June 2017 Publication History

Abstract

The aim of the present research was to analyze the acute psycho-physiological response during a high intensity interval training (HIIT) session of trained swimmers. We analyzed blood lactate concentration, heart rate, heart rate variability (HRV), arms isometric strength, rating of perceived exertion (RPE) and cortical arousal before and after a HIIT session in 14 trained swimmers (16.2 2.6 years 169.1 10.2 cm 61.3 9.9 kg). HIIT session consisted in: 4 ý10 m tethered swimming resting 90 s between sets, 3 min rest, 16 ý25 m maximum speed swimming resting 30 s between sets. Blood lactate concentration, cortical arousal, and rating of perceived exertion significantly increased (p < 0.05) after HIIT. HRV parameters significantly decreased after HIIT, showing an increase in sympathetic nervous system modulation. Results obtained showed the high impact of HIIT sessions on the swimmer's organism, which may be the cause of adaptation in this low volume training sessions.

References

[1]
Clemente-Suárez, V.J., Fernandes, R.J., Arroyo-Toledo, J.J., Figueiredo, P., González-Ravé, J.M., and Vilas-Boas, J.P., Autonomic adaptation after traditional and reverse swimming training periodizations. Act Physiol Hungarica. 102(1):105---103, 2015.
[2]
Arroyo-Toledo, J., Clemente-Suárez, V., Gonzalez, J., Ramos, D., and Sortwell, D., Comparison between traditional and reverse periodization: Swimming performance and specific strength values. Int J Swim Kin. 2(1):87---96, 2013.
[3]
Gibala, M., Little, J.P., Van Essen, M., Wilkin, G.P., Burgomaster, K.A., Safdar, A., Raha, S., and Tarnopolsky, M., Short-term sprint interval versus traditional endurance training: Similar initial adaptations in human skeletal muscle and exercise performance. J Physio. 575(3):901---911, 2006.
[4]
Wu, Z., Puigserver, P., Andersson, U., Zhang, C., Adelmant, G., Mootha, V., Troy, A., Cinti, S., Lowell, B., Scarpulla, R.C., and Spiegelman, B.M., Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell. 98(1):115---124, 1999.
[5]
Egan, B., Carson, B.P., Garcia-Roves, P.M., Chibalin, A.V., Sarsfield, F.M., Barron, N., McCaffrey, N., Moyna, N.M., Zierath, J.R., and O'Gorman, D.J., Exercise intensity-dependent regulation of peroxisome proliferator-activated receptor coactivator-1 mRNA abundance is associated with differential activation of upstream signalling kinases in human skeletal muscle. J Physiol. 588:1779---1790, 2010.
[6]
Terada, S., Tabatat, I., and Higuchi, M., (2004). Effect of high-intensity intermittent swimming training on fatty acid oxidation enzyme activity in rat skeletal muscle. Jape J Physiol. 54(1):42---52, 2004.
[7]
Terada, S., Yokozeki, T., Kawanaka, K., Ogawa, K., Higuchi, M., Ezaki, O., and Tabata, I., (2001). Effects of high-intensity swimming training on GLUT-4 and glucose transport activity in rat skeletal muscle. J Appl Physiol. 90:2019---2024, 2001.
[8]
Christensen E. H, Hedman R, Saltin B. Intermittent and continuous running. Ac Physiol Scan. 50: 269---286, (1960)
[9]
Tabata, I., Irisawa, K., Kouzaki, M., et al., Metabolic profile of high intensity intermittent exercises. Med Sci Sports Exerc. 29:390---395, 1997.
[10]
Warbuton, D., McKenzie, D., Haykowsky, M., Taylor, A., Shoemaker, P., Ignaszewski, A., and Chan, S., Effectiveness of high-intensity interval training for the rehabilitation of patients with coronary artery disease. Am J Cardiol. 95:1080---1084, 2005.
[11]
Costill, D.L., Thomas, R., Robergs, R.A., Pascoe, D., Lambert, C., Barr, S., and Fink, W.J., Adaptations to swimming training: Influence of training volume. Med Sci Sports Exerc. 23:371---377, 1991.
[12]
Seiler, S., What is best practice for training intensity and duration distribution in endurance athletes? Int J Sports Physiol Per. 5:276---291, 2010.
[13]
Billat, V.L., Bocquet, V., Slawinski, J., et al., Intermittent running at vVO2max allows to sustain a longer time at VO2max that severe continuous submaximal run. Med. Sci. Sports Exerc. 31(5):Supplement abstract):275, 1999.
[14]
Yeater, R.A., Bruce Martin, R., White, M.K., and Gilson, K.H., Tethered swimming forces in the crawl, breast and back strokes and their relationship to competitive performance. J Biomech. 14(8):527---537, 1981.
[15]
Trapp, G., Boutcher, Y.N., and Boutcher, S.H., Oxygen uptake response to high intensity intermittent cycle exercise. Med. Sci. Sports Exerc. 36(5):Suppl 1900, 2004.
[16]
Borg, G., Perceived exertion as an indicator of somatic stress. Scan J Rehab Med. 2(2):92---98, 1970.
[17]
Clemente Suárez, V.J., and Robles Pérez, J.J., Respuesta orgánica en una simulación de combate. Sanid Mil. 68(2):97---100, 2012.
[18]
Clemente Suárez, V.J., Martínez, A., Muñoz, V.E., and González Ravé, J.M., Fatiga del sistema nervioso después de una prueba incremental de consumo máximo de oxígeno. Arch med deporte. 137:174---180, 2010.
[19]
Weston, A., Myburgh, K., Lindsay, F., et al., Skeletal muscle buffering capacity and endurance performance after high-intensity interval training by well-trained cyclists. Eur J Appli Physiol. 75:7---13, 1997.
[20]
Laursen, P., Blanchard, M., and Jenkins, D., Acute high-intensity interval training improves Tvent and peak power output in highly trained males. Appl Physiol Nutrition Metab. 27(4):336---348, 2002.
[21]
Pringle, J., Doust, J., Carter, H., et al., Oxygen uptake kinetics during moderate, heavy and severe intensity `submaximal' exercise in humans: The influence of muscle fibre type and capillarisation. Eur J Appli Physiol. 89:289---300, 2003.
[22]
Li, Z., Jiao, K., Chen, M., et al., Reducing the effects of driving fatigue with magnitopuncture stimulation. Acc Anal Prev. 36:501---505, 2004.
[23]
Clemente, V., Muñoz, V., and Melús, M., Fatiga del sistema nervioso después de realizar un test de capacidad de sprints repetidos (RSA) en jugadores de fútbol profesionales. Arch Med Deporte. 143:103---112, 2011.
[24]
Clemente, V., Martínez, A., Muñoz, V., and González, J.M., Fatigue of central nervous system after an incremental maximal oxygen uptake test. Arch Med Deporte. 137:107---118, 2010.
[25]
Clemente, V., Fatiga del sistema nervioso después de una prueba de contrarreloj de 30¿ en cicloergómetro en ciclistas jóvenes. Motricidad. Eur J Hum Mov. 25:197---206, 2010.
[26]
Presland, J., Dowson, S., and Cairns, S., Changes of motor drive, cortical arousal and perceived exertion following prolonged cycling to exhaustion. Eur J Appl Physiol. 95:42---51, 2005.
[27]
Clemente, V., Huertas, C., and Juárez, D., Nervous system fatigue flicker fusion thresholds after performing a test of maximal strength in squat. Rev Entrenamiento Deportivo. 25(3):5---9, 2011.
[28]
Clemente, V., Fatigue of nervous system through flicker fusion thresholds after a maximum incremental cycling test. J Sport Health Res. 3(1):27---34, 2011.
[29]
Clemente-Suárez, V.J., Delgado-Moreno, R., González-Gómez, B., and Robles-Pérez, J.J., (2015). Respuesta psicofisiológica en un salto táctico paracaidista HAHO: caso de Estudio. San Mil. 71(3):179---182, 2015.
[30]
Weston, A., Myburgh, K., Lindsay, F., et al., Skeletal muscle buffering capacity and endurance performance after high-intensity interval training by well-trained cyclists. Eur J Appli Physiol. 75:7---13, 1997.
[31]
Leicht, A., Allen, G., and Hoey, A., Influence of intensive cycling training on heart rate variability during rest and exercise. Can J Appli Physiol. 28(6):898---909, 2003.
[32]
Clemente-Suárez, V.J., Psychophysiological response and energy balance during a 14-h ultraendurance mountain running event. Appl Physiol, Nutri, Met. 40(3):269---273, 2014.
[33]
Iellamo, F., Pigozzi, F., Spataro, A., et al., T-wave and heart rate variability changes to assess training in world-class athletes. Med Sci Sports Exerc. 36(8):1342---1346, 2004.
[34]
Ramos-Campo, D.J., Martínez-Sánchez, F., Esteban-García, P., Rubio-Arias, J.A., Clemente-Suarez, V.J., and Jiménez-Díaz, J.F., The effects of intermittent hypoxia training on hematological and aerobic performance in triathletes. Act Physiol Hung. 102(4):409---418, 2015.
[35]
Clemente-Suárez, V. J., Dalamitros, A. A., and Nikolaidis, P. T., The effect of a short-term training period on physiological parameters and running performance: Intensity distribution versus constant-intensity exercise. J. Sports Med. Phys. Fitness. 2016.
[36]
Arroyo-Toledo, J., Clemente-Suarez, V.J., and Gonzalez-Rave, J., Effects of traditional and reverse periodization on strength, body-composition and swim performance. Imperial J Interdisciplinary Res. 2(12):474---481.
[37]
Clemente-Suárez, V.J., Dalamitros, A., Ribeiro, J., Sousa, A., Fernandes, R.J., and Vilas-Boas, J.P., The effects of two different swimming training periodization on physiological parameters at various exercise intensities. Eur J Sport Sci., 2016.

Cited By

View all
  • (2019)Psychophysiological Stress Response of a Paralympic Athlete During an Ultra-Endurance Event. A Case StudyJournal of Medical Systems10.1007/s10916-019-1188-643:3(1-7)Online publication date: 1-Mar-2019
  • (2018)A complete psychophysiological profile of a Paralympic athlete in a ultraenduranceProceedings of the Sixth International Conference on Technological Ecosystems for Enhancing Multiculturality10.1145/3284179.3284259(471-476)Online publication date: 24-Oct-2018
  • (2018)The Use of Autonomic Modulation Device to Control Training Performance after High-Intensity Interval Training ProgramJournal of Medical Systems10.1007/s10916-018-0907-842:3(1-5)Online publication date: 30-Dec-2018
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of Medical Systems
Journal of Medical Systems  Volume 41, Issue 6
June 2017
134 pages

Publisher

Plenum Press

United States

Publication History

Published: 01 June 2017

Author Tags

  1. Heart rate
  2. Heart rate variability
  3. High intensive-interval training
  4. Lactate
  5. Swimming
  6. Training

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 11 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2019)Psychophysiological Stress Response of a Paralympic Athlete During an Ultra-Endurance Event. A Case StudyJournal of Medical Systems10.1007/s10916-019-1188-643:3(1-7)Online publication date: 1-Mar-2019
  • (2018)A complete psychophysiological profile of a Paralympic athlete in a ultraenduranceProceedings of the Sixth International Conference on Technological Ecosystems for Enhancing Multiculturality10.1145/3284179.3284259(471-476)Online publication date: 24-Oct-2018
  • (2018)The Use of Autonomic Modulation Device to Control Training Performance after High-Intensity Interval Training ProgramJournal of Medical Systems10.1007/s10916-018-0907-842:3(1-5)Online publication date: 30-Dec-2018
  • (2018)Use of Portable Digital Devices to Analyze Autonomic Stress Response in Psychology Objective Structured Clinical ExaminationJournal of Medical Systems10.1007/s10916-018-0893-x42:2(1-6)Online publication date: 1-Feb-2018

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media