[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
article

A Review of Simulators with Haptic Devices for Medical Training

Published: 01 April 2016 Publication History

Abstract

Medical procedures often involve the use of the tactile sense to manipulate organs or tissues by using special tools. Doctors require extensive preparation in order to perform them successfully; for example, research shows that a minimum of 750 operations are needed to acquire sufficient experience to perform medical procedures correctly. Haptic devices have become an important training alternative and they have been considered to improve medical training because they let users interact with virtual environments by adding the sense of touch to the simulation. Previous articles in the field state that haptic devices enhance the learning of surgeons compared to current training environments used in medical schools (corpses, animals, or synthetic skin and organs). Consequently, virtual environments use haptic devices to improve realism. The goal of this paper is to provide a state of the art review of recent medical simulators that use haptic devices. In particular we focus on stitching, palpation, dental procedures, endoscopy, laparoscopy, and orthopaedics. These simulators are reviewed and compared from the viewpoint of used technology, the number of degrees of freedom, degrees of force feedback, perceived realism, immersion, and feedback provided to the user. In the conclusion, several observations per area and suggestions for future work are provided.

References

[1]
Vanlehn, K., The Behavior of Tutoring Systems. Int. J. Artif. Intell. Educ. 16(3):227---265.
[2]
Gazibara, T, Marusic, V., Maric, G., Zaric, M., Vujcic, I., Kisic-Tepavcevic, D., Maksimovic, J., Maksimovic, N., Denic, L. M., Grujicic, S. S., Pekmezovic, T., Grgurevic, A., Introducing E-learning in Epidemiology Course for Undergraduate Medical Students at the Faculty of Medicine, University of Belgrade: A Pilot Study. J. Med. Syst. 40(3):1---12, 2015.
[3]
Ito, M., Sugito, M., Kobayashi, A., Nishizawa, Y., Tsunoda, Y., Saito, N., Influence of learning curve on short-term results after laparoscopic resection for rectal cancer. Surg. Endosc. 23(2):403---408, 2009.
[4]
Tseng, J. F., Pisters, P. W., Lee, J. E., Wang, H., Gómez, H. F., Sun, C. C., Evans, D. B., The learning curve in pancreatic surgery. Surgery 141(4):456---463, 2007.
[5]
Vickers, A.J., Savage, C.J., Hruza, M., Tuerk, I., Koenig, P., Martínez-Piñeiro, L., Janetschek, G., Guillonneau, B., The surgical learning curve for laparascopic compared to open radical prostatectomy: a retrospective cohort study. Lancet Oncol. 10(5):475---480, 2009.
[6]
Lau, F., and Bates, J., A review of e-learning practices for undergraduate medical education. J. Med. Syst. 28(1):71---87, 2004.
[7]
Juanes, J. A., and Ruisoto, P., Computer applications in health science education. J. Med. Syst. 39(9):1---5, 2015.
[8]
Secin, F. P., Savage, C., Abbou, C., de La Taille, A., Salomon, L., Rassweiler, J., Hruza, M., Rozet, F., Cathelineau, X., Janetschek, G., Nassar, F., Turk, I., Vanni, A. J., Gill, I. S., Koenig, P., Kaouk, J. H., Martinez Pineiro, L., Pansadoro, V., Emiliozzi, P., Bjartell, A., Jiborn, T., Eden, C., Richards, A.J., Van Velthoven, R., Stolzenburg, J.-U., Rabenalt, R., Su, L.-M., Pavlovich, C. P., Levinson, A.W., Touijer, K.A., Vickers, A., Guillonneau, B., The learning curve for laparoscopic radical prostatectomy: an international multicenter study. J. Urol. 184(6):2291---2296, 2010.
[9]
Coles, T.R., Meglan, D., John, N.W., The Role of Haptics in Medical Training Simulators : A Survey of the State of the Art. IEEE Trans. Haptic 4(1):51---66, 2011.
[10]
Cotin, S., Delingette, H., Ayache, N., Real-Time Elastic Deformations of Soft Tissues for Surgery Simulation. IEEE Trans. Vis. Comput. Graph. 5(1):62---73, 1999.
[11]
Brown, J., Sorkina, S., Latombea, J. -C., Montgomery, K., Stephanides, M., Algorithmic Tools for Real-Time Microsurgery Simulation. Med. Image Anal. 6(3):289---300, 2002.
[12]
Immersion Medical, Medical Solutions, {accessed Oct-15-2014}. http://www.immersion.com/markets/medical/solutions/index.html
[13]
Mentice, About us, {accessed Oct-15-2014}. http://www.mentice.com/about-us/
[14]
ReachIn Technologies, About ReachIn Technologies, {accessed Oct-15-2014}. http://www.reachin.se/companyinfo/
[15]
Science, Surgical, About us, {accessed Oct-15-2014}. http://www.surgical-science.com/surgical-science/about-us/
[16]
Simbionix, GI Mentor, {accessed Jan-18-2016}. http://simbionix.com/simulators/gi-mentor/
[17]
CAE Healthcare, CAE Healthcare, {accessed Feb-15-2015}. http://www.caehealthcare.com/eng/
[18]
Basdogan, C., and Srinivasan, M.A.: Haptic Rendering in Virtual Environments. In: Handbook of Virtual Environments, 2002, pp. 117---134
[19]
Massie, T.H., Design of a Three Degree of Freedom Force-Reflecting Haptic Interface, Ph.D. thesis, 1993.
[20]
Van der Linde, R.Q., Lammertse, P., Frederiksen, E., Ruiter, B.: The hapticmaster, a new high-performance haptic interface. In: Proc. Euro-haptics (2002), pp. 1---5
[21]
Basdogan, C., De, S., Kim, J., Muniyandi, M., Kim, H., Srinivasan, M. A., Haptics in minimally invasive surgical simulation. IEEE Comput. Graph. Appl. 24(2):56---64, 2004.
[22]
Marshall, P., Payandeh, S., Dill, J.: A study on haptic rendering in a simulated surgical training environment. In: 14th symposium on haptic interfaces for virtual environment and teleoperator systems, 2006, pp. 241---247
[23]
Jia, S., and Pan, Z.: A preliminary study of suture simulation in virtual surgery. In: International conference on audio language and image processing (ICALIP), 2010, pp. 1340---1345
[24]
Brown, J., Latombe, J.-C., Montgomery, K., Real-time knot-tying simulation. Vis. Comput. 20(2-3): 165---179, 2004.
[25]
Payandeh, S., and Shi, F., Interactive multi-modal suturing. Virtual Reality 14(4):241---253, 2010.
[26]
Ricardez, E., Noguez, J., Neri, L., Munoz-Gomez, L., Escobar-Castillejos, D.: SutureHap : A suture simulator with haptic feedback. In: Workshop on virtual reality interaction and physical simulation VRIPHYS, 2014, pp. 79---86
[27]
Choi, K.-S., Chan, S.-H., Pang, W.-M., Virtual suturing simulation based on commodity physics engine for medical learning. J. Med. Syst. 36(3):1781---1793, 2012.
[28]
Salisbury, K., Conti, F., Barbagli, F., Haptic rendering: introductory concepts. IEEE Comput. Graph. Appl. 24(2):24---32, 2004.
[29]
Min, L., Faragasso, A., Konstantinova, J., Aminzadeh, V., Seneviratne, L., Dasgupta, P., Althoefer, K.: A novel tumor localization method using haptic palpation based on soft tissue probing data. In: IEEE international conference on robotics and automation (ICRA), 2014, pp. 4188---4193
[30]
Ullrich, S., and Kuhlen, T., Haptic palpation for medical simulation in virtual environments. IEEE Trans. Vis. Comput. Graph. 18(4):617---625, 2012.
[31]
Coumans, E.: Bullet physics library, {accessed April-15-2015}. http://bulletphysics.org/wordpress/
[32]
Coles, T., John, N., Gould, D., Caldwell, D., Integrating haptics with augmented reality in a femoral palpation and needle insertion training simulation. IEEE Trans. Haptic 4(3):199---209, 2011.
[33]
Phantom Head Dental Ltd, Phantom Head, {accessed Oct-15-2014}. http://www.phantomhead.com/
[34]
Tse, B., Harwin, W., Barrow, A., Quinn, B., San Diego, J., Cox, M.: Design and development of a haptic dental training system - hapTEL. In: Vol. 6192 of Lecture Notes in Computer Science - Haptics: Generating and Perceiving Tangible Sensations, Springer Berlin Heidelberg, pp. 101---108 (2010)
[35]
Si, H., Tetgen, {accessed Oct-15-2014}. http://wias-berlin.de/software/tetgen/
[36]
Chen, X., Lin, Y., Wang, C., Shen, G., Wang, X.: A virtual training system using a force feedback haptic device for oral implantology. In: Transactions on edutainment VIII, Springer Berlin Heidelberg, 2012, pp. 232---240
[37]
Kosuki, Y., Okada, Y., 3D visual component based development system for medical training systems supporting haptic devices and their collaborative environments. In: Sixth International Conference on Complex, Intelligent and Software Intensive Systems (CISIS), 2012, pp. 687---692
[38]
Hui, Z., and Dang-xiao, W.: Soft tissue simulation with bimanual force feedback. In: International conference on audio language and image processing (ICALIP), 2010, pp. 903---907
[39]
Yanng, B., Intelligent learning system based on HMM model, 2011 Intl. Symposium on Knowledge Acquisition and Modeling (KAM),560---564, 2011.
[40]
Okada, Y., and Tanaka, Y.: Intelligentbox: A constructive visual software development system for interactive 3D graphic applications. In: Proceedings computer animation, 1995, pp. 114---125, 213
[41]
Basdogan, C., Sedef, M., Harders, M., Wesarg, S., VR-based simulators for training in minimally invasive surgery. IEEE Comput. Graph. Appl. 27(2):54---66, 2007.
[42]
Wang, D., Zhang, Y., Hou, J., Wang, Y., Lv, P., Chen, Y., Zhao, H., iDental: A haptic-based dental simulator and its preliminary user evaluation. IEEE Trans. Haptic 5(4):332---343, 2012.
[43]
SensAble, Ghost SDK, {accessed April-10-2015}. http://www.dentsable.com/support-ghost-sdk.htm
[44]
Rodwin, M.A., Chang, H.J., Ozaeta, M.M., Omar, R., Malpractice premiums in massachusetts, a high-risk state: 1975 to 2005. Health Aff. 27(3):835---844, 2008.
[45]
Stone, S., and Bernstein, M., Prospective error recording in surgery: an analysis of 1108 elective neurosurgical cases. Neurosurgery 60(6):1075---1080, 2007.
[46]
Delorme, S., Laroche, D., DiRaddo, R., Del Maestro, R.F., NeuroTouch: a physics-based virtual simulator for cranial microneurosurgery training. Neurosurgery 71:32---42, 2012.
[47]
Jiang, D., Hovdebo, J., Cabral, A., Mora, V., Delorme, S., Endoscopic third ventriculostomy on a microneurosurgery simulator. SIMULATION: Transactions of The Society for Modeling and Simulation International 89(12):1442---1449, 2013.
[48]
Neubauer, A., Wolfsberger, S., Forster, M. -T., Mroz, L., Wegenkittl, R., Buhler, K., Advanced virtual endoscopic pituitary surgery. IEEE Trans. Vis. Comput. Graph. 11(5):497---507, 2005.
[49]
Perez-Gutierrez, B., Martinez, D.M., Rojas, O.E., Endoscopic endonasal haptic surgery simulator prototype: A rigid endoscope model, 2010 IEEE Virtual Reality Conference (VR), 2010
[50]
Bioingenium Research Group, Nukak3D, {accessed Oct-15-2014}. http://nukak3d.sourceforge.net/index.php
[51]
Punak, S., Kurenov, S., Cance, W.: Virtual interrupted suturing exercise with the Endo stitch suturing device. In: Advances in visual computing, Springer Berlin Heidelberg, 2011, pp. 55---63
[52]
Spillmann, J., and Teschner, M.: CoRdE: Cosserat Rod elements for the dynamic simulation of one-dimensional elastic objects. In: Eurographics/ACM SIGGRAPH symposium on computer animation, 2007, pp. 1---10
[53]
Park, C.H., Wilson, K.L., Howard, A.M.: Examining the learning effects of a low-cost haptic-based virtual reality simulator on laparoscopic cholecystectomy. In: Proceedings of the 26th IEEE international symposium on computer-based medical systems, 2013, pp. 233---238
[54]
Gaudina, M., Zappi, V., Bellanti, E., Vercelli, G.: eLaparo4D: A step towards a physical training space for virtual video laparoscopic surgery. In: IEEE seventh international conference on complex, intelligent, and software intensive systems, 2013, pp. 611---616
[55]
Unity Technologies, Unity - Game engine, tools, and multiplatform, {accessed Jan-18-2015}. https://unity3d.com/es/unity
[56]
Blender Foundation, Blender, {accessed Oct-15-2014}. http://www.blender.org/
[57]
De Paolis, L.T.: Serious game for laparoscopic suturing training. In: IEEE sixth international conference on complex, intelligent, and software intensive systems (CISIS), 2012, pp. 481---485
[58]
Torus Knot Software Ltd, Ogre3D, {accessed Oct-15---2014}. http://www.ogre3d.org/
[59]
Halic, T., and De, S.: Lightweight bleeding and smoke effect for surgical simulators. In: IEEE virtual reality conference (VR), 2010, pp. 271---272
[60]
De, S., Ahn, W., Lee, D.Y., Jones, D.B.: Novel virtual lap-band simulator could promote patient safety. In: Medicine meets virtual reality 16, 2008, pp. 98---100
[61]
Hernansanz, A., Zerbato, D., Gasperotti, L., Scandola, M., Fiorini, P., Casals, A.: Improving the development of surgical skills with virtual fixtures in simulation. In: Information processing in computer-assisted interventions, Springer Berlin Heidelberg, 2012, pp. 157---166
[62]
Rasmussen, J., and Member, S., Skills, Rules, and Knowledge; Signals, Signs, and Symbols, and Other Distinctions in Human Performance Models. IEEE Trans. Syst. Man Cybern. 13(3):257---266, 1983.
[63]
Zerbato, D., Baschirotto, D., Baschirotto, D., Botturi, D., Fiorini, P., GPU-based physical cut in interactive haptic simulations. Int. J. Comput. Assist. Radiol. Surg. 6(2):265---72, 2011.
[64]
Chen, Y., and He, X.: Haptic simulation of bone drilling based on hybrid 3d part representation. In: 2013 IEEE international conference on computational intelligence and virtual environments for measurement systems and applications (CIVEMSA), 2013, pp. 78-81
[65]
Cecil, J., Ramanathan, P., Rahneshin, V., Prakash, A., Pirela-Cruz, M.: Collaborative virtual environments for orthopedic surgery. In: IEEE international conference on automation science and engineering (CASE), 2013, pp. 133-137
[66]
Ni, D., Chan, W. -Y., Qin, J., Chui, Y. -P., Qu, I., Ho, S., Heng, P. -A., A virtual reality simulator for ultrasound-guided biopsy training. IEEE Comput. Graph. Appl. 31(2):36---48, 2011.
[67]
Selmi, S.-Y., Fiard, G., Promayon, E., Vadcard, L., Troccaz, J.: A virtual reality simulator combining a learning environment and clinical case database for image-guided prostate biopsy. In: IEEE 26th international symposium on computer-based medical systems (CBMS), 2013, pp. 179-184
[68]
TIMC-IMAG laboratory, Computer Assisted Medical Intervention Tool Kit, {accessed Jan-01-2016}. http://camitk.imag.fr/
[69]
Yi, N., Xiao-jun, G., Xiao-ru, L., Xiang-feng, X., Wanjun, M.: The implementation of haptic interaction in virtual surgery. In: International conference on electrical and control engineering (ICECE), 2010, pp. 2351-2354
[70]
Wei, L., Najdovski, Z., Abdelrahman, W., Nahavandi, S., Weisinger, H.: Augmented optometry training simulator with multi-point haptics. In: IEEE international conference on systems, man, and cybernetics (SMC), 2012, pp. 2991-2997
[71]
Gamecho, B., Silva, H., Guerreiro, J., Gardeazabal, L., Abascal, J., A context-aware application to increase elderly users compliance with physical rehabilitation exercises at home via animatronic biofeedback. J. Med. Syst. 39(11):1---11, 2015.
[72]
Rajanna, V., Vo, P., Barth, J., Mjelde, M., Grey, T., Oduola, C., Hammond, T., Kinohaptics: An automated, wearable, haptic assisted, physio-therapeutic system for post-surgery rehabilitation and self-care. J. Med. Syst. 40(3):1---12, 2015.
[73]
Heng, P.-A., Cheng, C.-Y., Wong, T.-T., Xu, Y., Chui, Y.-P., Chan, K.-M., Tso, S.-K., A virtual-reality training system for knee arthroscopic surgery. IEEE Trans. Inf. Technol. Biomed. 8(2):217---227, 2004.
[74]
Hirche, S., and Buss, M., Human-oriented control for haptic teleoperation. Proc. IEEE 100(3):623---647, 2012.
[75]
NVIDIA, PhysX FAQ - NVIDIA, {accessed April-15-2015}. http://www.nvidia.com/object/physxfaq.html
[76]
Havok, About Havok, {accessed April-15-2015}. http://www.havok.com/about-havok/
[77]
Newton dynamics, Newton Dynamics - About Newton, {accessed April-15-2015}. http://newtondynamics.com/forum/newton.php
[78]
Reinkensmeyer, D.J., How to retrain movement after neuro- logic injury: a computational rationale for incorporating robot (or therapist) assistance. IEEE Engineering in Medicine and Biology Society Meeting 2:1479---1482, 2003.
[79]
Crespo, L.M., Reinkensmeyer, D.J., Effect of robotic guidance on motor learning of a timing task (2008)
[80]
Powell, D., and O'Malley, M.K.: Efficacy of shared-control guidance paradigms for robot-mediated training. In: IEEE world haptics conference, pp. 427---432 (2011)

Cited By

View all
  • (2024)Tactile Interaction System for Remote TeleoperationProceedings of the 2024 4th International Conference on Robotics and Control Engineering10.1145/3674746.3674773(171-175)Online publication date: 27-Jun-2024
  • (2024)Choosing the Right Reality: A Comparative Analysis of Tangibility in Immersive Trauma SimulationsProceedings of the 2024 CHI Conference on Human Factors in Computing Systems10.1145/3613904.3641912(1-17)Online publication date: 11-May-2024
  • (2024)Real needle for minimal invasive procedures training using motion sensors and optical flowComputers in Biology and Medicine10.1016/j.compbiomed.2024.107935170:COnline publication date: 25-Jun-2024
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of Medical Systems
Journal of Medical Systems  Volume 40, Issue 4
April 2016
372 pages

Publisher

Plenum Press

United States

Publication History

Published: 01 April 2016

Author Tags

  1. 3D simulators
  2. E-learning
  3. Haptic devices
  4. Medical training
  5. Training

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 10 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Tactile Interaction System for Remote TeleoperationProceedings of the 2024 4th International Conference on Robotics and Control Engineering10.1145/3674746.3674773(171-175)Online publication date: 27-Jun-2024
  • (2024)Choosing the Right Reality: A Comparative Analysis of Tangibility in Immersive Trauma SimulationsProceedings of the 2024 CHI Conference on Human Factors in Computing Systems10.1145/3613904.3641912(1-17)Online publication date: 11-May-2024
  • (2024)Real needle for minimal invasive procedures training using motion sensors and optical flowComputers in Biology and Medicine10.1016/j.compbiomed.2024.107935170:COnline publication date: 25-Jun-2024
  • (2024)Design and evaluation of UltRASimComputers and Graphics10.1016/j.cag.2024.01.005119:COnline publication date: 1-Apr-2024
  • (2023)Tangible Immersive Trauma Simulation: Is Mixed Reality the next level of medical skills training?Proceedings of the 2023 CHI Conference on Human Factors in Computing Systems10.1145/3544548.3581292(1-17)Online publication date: 19-Apr-2023
  • (2023)Visualization in virtual reality: a systematic reviewVirtual Reality10.1007/s10055-023-00753-827:2(1447-1480)Online publication date: 17-Jan-2023
  • (2022)Automatic Performance Assessment in Three-dimensional Interactive Haptic Medical Simulators: A Systematic ReviewACM Computing Surveys10.1145/353922255:7(1-35)Online publication date: 15-Dec-2022
  • (2022)Validation de l’aspect et du contenu d’un simulateur immersif pour la formation des opérateurs en anesthésie locorégionale échoguidéeProceedings of the 33rd Conference on l'Interaction Humain-Machine10.1145/3500866.3516376(1-15)Online publication date: 5-Apr-2022
  • (2022)Contactless Haptic Display Through Magnetic Field ControlIEEE Transactions on Haptics10.1109/TOH.2022.315167315:2(328-338)Online publication date: 1-Apr-2022
  • (2022)Haptic/virtual reality orthopedic surgical simulators: a literature reviewVirtual Reality10.1007/s10055-022-00666-y26:4(1795-1825)Online publication date: 1-Dec-2022
  • Show More Cited By

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media