[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
research-article

Optimal Randomized EREW PRAM Algorithms for Finding Spanning Forests

Published: 01 April 2001 Publication History

Abstract

We present the first randomized O(logn) time and O(m+n) work EREW PRAM algorithm for finding a spanning forest of an undirected graph G=(V,E) with n vertices and m edges. Our algorithm is optimal with respect to time, work, and space. As a consequence we get optimal randomized EREW PRAM algorithms for other basic connectivity problems such as finding a bipartite partition, finding bridges and biconnected components, finding Euler tours in Eulerian graphs, finding an ear decomposition, finding an open ear decomposition, finding a strong orientation, and finding an st-numbering.

References

[1]
B. Awerbuch, A. Israeli, Y. Shiloach, Finding Euler circuits in logarithmic parallel time, in: Advances in Computing Research, JAI Press, 1987, pp. 79-86.
[2]
R. Aleliunas, R.M. Karp, R.J. Lipton, L. Lovasz, C. Rackoff, Random walks, universal sequences and the complexity of maze problems, 1979.
[3]
B. Awerbuch, Y. Shiloach, New connectivity and MSF algorithms for shuffle-exchange network and PRAM, IEEE Trans. Comput., 36 (1987) 1258-1263.
[4]
N. Alon, J.H. Spencer, Wiley, New York, 1992.
[5]
M.J. Atallah, U. Vishkin, Finding Euler tours in parallel, J. Comput. Syst. Sci., 29 (1984) 330-337.
[6]
G. Barnes, U. Feige, Short random walks on graphs, SIAM J. Discrete Mathematics, 9 (1996) 19-28.
[7]
R. Cole, P.N. Klein, R.E. Tarjan, Finding minimum spanning forests in logarithmic time and linear work using random sampling, 1996.
[8]
K.W. Chong, T.W. Lam, Finding connected components in O(lognloglogn) time on the EREW PRAM, J. Algorithms, 18 (1995) 378-402.
[9]
F.Y. Chin, J. Lam, I.N. Chen, Efficient parallel algorithms for some graph problems, Commun. ACM, 25 (1982) 659-665.
[10]
R. Cole, Parallel merge-sort, SIAM J. Comput., 17 (1988) 770-785.
[11]
R. Cole, U. Vishkin, Approximate parallel scheduling. Part II: Applications to logarithmic-time optimal graph algorithms, Inform. and Comput., 92 (1991) 1-47.
[12]
D. Fussell, V. Ramachandran, R. Thurimella, Finding triconnected components by local replacement, SIAM J. Comput., 22 (1993) 587-616.
[13]
H. Gazit, An optimal randomized parallel algorithm for finding connected components in a graph, SIAM J. Comput., 20 (1991) 1046-1067.
[14]
H.N. Gabow, J.L. Bentley, R.E. Tarjan, Scaling and related techniques for geometry problems, 1984.
[15]
M.T. Goodrich, S.R. Kosaraju, Sorting on a parallel pointer machine with applications to set expression evaluation, J. ACM, 43 (1996) 331-361.
[16]
D.S. Hirschberg, A.K. Chandra, D.V. Sarwate, Computing connected components on parallel computers, Commun. ACM, 22 (1979) 461-464.
[17]
Y. Han, R.A. Wagner, An efficient and fast parallel connected component algorithm, J. of the ACM, 37 (1990) 626-642.
[18]
S. Halperin, U. Zwick, Optimal randomized EREW PRAM algorithms for finding spanning forests and for other basic graph connectivity problems, 1996.
[19]
S. Halperin, U. Zwick, An optimal randomized logarithmic time connectivity algorithm for the EREW PRAM, J. Comput. Syst. Sci., 53 (1996) 395-416.
[20]
K. Iwama, Y. Kambayashi, A simpler parallel algorithm for graph connectivity, J. Algorithms, 16 (1994) 190-217.
[21]
J. JáJá, Addison¿Wesley, Reading, 1992.
[22]
D.B. Johnson, P. Metaxas, A parallel algorithm for computing minimum spanning trees, J. Algorithms, 19 (1995) 383-401.
[23]
D.B. Johnson, P. Metaxas, Connected components in O(log3/2n) parallel time for CREW PRAM, J. Comput. Syst. Sci., 54 (1997) 227-242.
[24]
D. R. Karger, Random Sampling in Graph Optimization Problems, Ph.D. thesis, Department of Computer Science, Stanford University, 1994.
[25]
D.R. Karger, P.N. Klein, R.E. Tarjan, A randomized linear-time algorithm to find minimum spanning trees, J. ACM, 42 (1995) 321-328.
[26]
D.R. Karger, N. Nisan, M. Parnas, Fast connected components algorithms for the EREW PRAM, SIAM J. Comput., 28 (1999) 1021-1034.
[27]
V. King, C.K. Poon, V. Ramachandran, S. Sinha, An optimal EREW PRAM algorithm for minimum spanning tree verification, Inform. Process. Lett., 62 (1997) 153-159.
[28]
C.P. Kruskal, L. Rudolph, M. Snir, Efficient parallel algorithms for graph problems, Algorithmica, 5 (1990) 43-64.
[29]
P.N. Klein, R.E. Tarjan, A randomized linear-time algorithm for finding minimum spanning trees, 1994.
[30]
G. Miller, and, V. Ramachandran, Efficient parallel ear decomposition with applications, unpublished manuscript, MSRI, Berkeley, CA, 1986.
[31]
G.L. Miller, J.H. Reif, Parallel tree contraction, Part 1: Fundamentals, in: Advances in Computing Research, Vol. 5, Randomness and Computation, JAI Press, 1989, pp. 47-72.
[32]
R. Motwani, P. Raghavan, Cambridge Univ. Press, Cambridge, 1995.
[33]
Y. Maon, B. Schieber, U. Vishkin, Parallel ear decomposition search (eds) and st-numbering in graphs, Theoret. Comput. Sci., 47 (1986) 277-298.
[34]
D. Nash, S.N. Maheshwari, Parallel algorithms for the connected components and minimal spanning trees, Inform. Process. Lett., 14 (1982) 7-11.
[35]
N. Nisan, E. Szemerédi, A. Wigderson, Undirected connectivity in O(log1.5n) space, 1992.
[36]
C.A. Phillips, Parallel graph contraction, 1989.
[37]
C.K. Poon, V. Ramachandran, A randomized linear work EREW PRAM algorithm to find a minimum spanning forest, 1997.
[38]
T. Radzik, Computing connected components on EREW PRAM, Technical Report, 94/02, King's College London, 1994.
[39]
V. Ramachandran, Parallel open ear decomposition with applications to graph biconnectivity and triconnectivity, Technical Report, UTEXAS.CS//CS-TR-92-02, University of Texas at Austin, Department of Computer Sciences, 1992.
[40]
V. Ramachandran, Parallel open ear decomposition with applications to graph biconnectivity and triconnectivity, in: Synthesis of Parallel Algorithms, Morgan Kaufmann, 1993, pp. 275-340.
[41]
V. Ramachandran, personal communication, 1996.
[42]
V. Ramachandran, J. Reif, Planarity testing in parallel, J. Comput. Syst. Sci., 49 (1994) 517-561.
[43]
Y. Shiloach, U. Vishkin, An O(logn) parallel connectivity algorithm, J. Algorithms, 3 (1982) 57-67.
[44]
B. Schieber, U. Vishkin, On finding lowest common ancestors: Simplification and parallelization, SIAM J. Comput., 17 (1988) 1253-1262.
[45]
R.E. Tarjan, U. Vishkin, An efficient parallel biconnectivity algorithm, SIAM J. Comput., 14 (1985) 862-874.

Cited By

View all
  • (2024)Connected Components in Linear Work and Near-Optimal TimeProceedings of the 36th ACM Symposium on Parallelism in Algorithms and Architectures10.1145/3626183.3659963(395-402)Online publication date: 17-Jun-2024
  • (2023)Time-optimal construction of overlay networksDistributed Computing10.1007/s00446-023-00442-436:3(313-347)Online publication date: 15-Feb-2023
  • (2022)Simple Concurrent Connected Components AlgorithmsACM Transactions on Parallel Computing10.1145/35435469:2(1-26)Online publication date: 1-Sep-2022
  • Show More Cited By

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Journal of Algorithms
Journal of Algorithms  Volume 39, Issue 1
April 2001
135 pages
ISSN:0196-6774
Issue’s Table of Contents

Publisher

Academic Press, Inc.

United States

Publication History

Published: 01 April 2001

Qualifiers

  • Research-article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 11 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Connected Components in Linear Work and Near-Optimal TimeProceedings of the 36th ACM Symposium on Parallelism in Algorithms and Architectures10.1145/3626183.3659963(395-402)Online publication date: 17-Jun-2024
  • (2023)Time-optimal construction of overlay networksDistributed Computing10.1007/s00446-023-00442-436:3(313-347)Online publication date: 15-Feb-2023
  • (2022)Simple Concurrent Connected Components AlgorithmsACM Transactions on Parallel Computing10.1145/35435469:2(1-26)Online publication date: 1-Sep-2022
  • (2021)Time-Optimal Construction of Overlay NetworksProceedings of the 2021 ACM Symposium on Principles of Distributed Computing10.1145/3465084.3467932(457-468)Online publication date: 21-Jul-2021
  • (2021)Work-Optimal Parallel Minimum Cuts for Non-Sparse GraphsProceedings of the 33rd ACM Symposium on Parallelism in Algorithms and Architectures10.1145/3409964.3461806(351-361)Online publication date: 6-Jul-2021
  • (2021)Concurrent disjoint set unionDistributed Computing10.1007/s00446-020-00388-x34:6(413-436)Online publication date: 1-Dec-2021
  • (2020)Connected Components on a PRAM in Log Diameter TimeProceedings of the 32nd ACM Symposium on Parallelism in Algorithms and Architectures10.1145/3350755.3400249(359-369)Online publication date: 6-Jul-2020
  • (2020)Theoretically-Efficient and Practical Parallel DBSCANProceedings of the 2020 ACM SIGMOD International Conference on Management of Data10.1145/3318464.3380582(2555-2571)Online publication date: 11-Jun-2020
  • (2019)Parallel Batch-Dynamic Graph ConnectivityThe 31st ACM Symposium on Parallelism in Algorithms and Architectures10.1145/3323165.3323196(381-392)Online publication date: 17-Jun-2019
  • (2018)Shortcutting Label Propagation for Distributed Connected ComponentsProceedings of the Eleventh ACM International Conference on Web Search and Data Mining10.1145/3159652.3159696(540-546)Online publication date: 2-Feb-2018
  • Show More Cited By

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media