[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.5555/1880999.1881046guideproceedingsArticle/Chapter ViewAbstractPublication PagesConference Proceedingsacm-pubtype
Article

Contention resolution under selfishness

Published: 06 July 2010 Publication History

Abstract

In many communications settings, such as wired and wireless local-area networks, when multiple users attempt to access a communication channel at the same time, a conflict results and none of the communications are successful. Contention resolution is the study of distributed transmission and retransmission protocols designed to maximize notions of utility such as channel utilization in the face of blocking communications.
An additional issue to be considered in the design of such protocols is that selfish users may have incentive to deviate from the prescribed behavior, if another transmission strategy increases their utility. The work of Fiat et al. [8] addresses this issue by constructing an asymptotically optimal incentive-compatible protocol. However, their protocol assumes the cost of any single transmission is zero, and the protocol completely collapses under non-zero transmission costs.
In this paper, we treat the case of non-zero transmission cost c. We present asymptotically optimal contention resolution protocols that are robust to selfish users, in two different channel feedback models. Our main result is in the Collision Multiplicity Feedback model, where after each time slot, the number of attempted transmissions is returned as feedback to the users. In this setting, we give a protocol that has expected cost 2n + clogn and is in o(1)-equilibrium, where n is the number of users.

References

[1]
Abramson, N.: The ALOHA system: Another alternative for computer communications. In: Proceedings of the Fall Joint Computer Conference, November 17-19, pp. 281-285. ACM, New York (1970).
[2]
Altman, E., El Azouzi, R., Jiménez, T.: Slotted aloha as a game with partial information. Comput. Netw. 45(6), 701-713 (2004).
[3]
Altman, E., Barman, D., Benslimane, A., El Azouzi, R.: Slotted aloha with priorities and random power. In: Proc. IEEE Infocom (2005).
[4]
Auletta, V., Moscardelli, L., Penna, P., Persiano, G.: Interference games in wireless networks. In: Papadimitriou, C., Zhang, S. (eds.)WINE 2008. LNCS, vol. 5385, pp. 278-285. Springer, Heidelberg (2008).
[5]
Bender, M., Farach-Colton, M., He, S., Kuszmaul, B., Leiserson, C.: Adversarial contention resolution for simple channels. In: SPAA 2005, pp. 325-332. ACM, New York (2005).
[6]
Capetanakis, J.: Generalized tdma: The multi-accessing tree protocol. IEEE Transactions on Communications 27(10), 1476-1484 (1979).
[7]
Capetanakis, J.: Tree algorithms for packet broadcast channels. IEEE Transactions on Information Theory 25(5), 505-515 (1979).
[8]
Fiat, A., Mansour, Y., Nadav, U.: Efficient contention resolution protocols for selfish agents. In: SODA 2007, pp. 179-188. SIAM, Philadelphia (2007).
[9]
Georgiadis, L., Papantoni-Kazakos, P.: A collision resolution protocol for random access channels with energy detectors. IEEE Transactions on Communications COM-30, 2413- 2420 (1982).
[10]
Geréb-Graus, M., Tsantilas, T.: Efficient optical communication in parallel computers. In: SPAA 1992, pp. 41-48. ACM, New York (1992).
[11]
Goldberg, L.A., MacKenzie, P.D.: Analysis of practical backoff protocols for contention resolution with multiple servers. J. Comput. Syst. Sci. 58(1), 232-258 (1999).
[12]
Goldberg, L.A., Mackenzie, P.D., Paterson, M., Srinivasan, A.: Contention resolution with constant expected delay. J. ACM 47(6), 1048-1096 (2000).
[13]
Greenberg, A., Winograd, S.: A lower bound on the time needed in the worst case to resolve conflicts deterministically in multiple access channels. J. ACM 32(3), 589-596 (1985).
[14]
Hayes, J.: An adaptive technique for local distribution. IEEE Transactions on Communications 26(8), 1178-1186 (1978).
[15]
Koutsoupias, E., Papadimitriou, C.H.: Worst-case equilibria. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 404-413. Springer, Heidelberg (1999).
[16]
Ma, R.T., Misra, V., Rubenstein, D.: Modeling and analysis of generalized slotted-aloha mac protocols in cooperative, competitive and adversarial environments. In: ICDCS 2006, Washington, DC, USA, p. 62. IEEE, Los Alamitos (2006).
[17]
MacKenzie, A., Wicker, S.: Stability of multipacket slotted aloha with selfish users and perfect information (2003).
[18]
MacKenzie, P.D., Plaxton, C.G., Rajaraman, R.: On contention resolution protocols and associated probabilistic phenomena. J. ACM 45(2), 324-378 (1998).
[19]
Menache, I., Shimkin, N.: Efficient rate-constrained nash equilibrium in collision channels with state information. In: INFOCOM 2008, pp. 403-411 (2008).
[20]
Pippenger, N.: Bounds on the performance of protocols for a multiple-access broadcast channel. IEEE Transactions on Information Theory 27(2), 145-151 (1981).
[21]
Raghavan, P., Upfal, E.: Stochastic contention resolution with short delays. Technical report, Weizmann Science Press of Israel, Jerusalem, Israel, Israel (1995).
[22]
Roberts, L.: Aloha packet system with and without slots and capture. SIGCOMM Comput. Commun. Rev. 5(2), 28-42 (1975).
[23]
Ruszinko, M., Vanroose, P.: How an erdöos-rényi-type search approach gives an explicit code construction of rate 1 for random access with multiplicity feedback. IEEE Transactions on Information Theory 43(1), 368-372 (1997).
[24]
Srivastava, V., Neel, J.A., MacKenzie, A.B., Hicks, J.E., DaSilva, L.A., Reed, J.H., Gilles, R.P.: Using game theory to analyze wireless ad hoc networks. IEEE Communications Surveys and Tutorials 7(5), 46-56 (2005).
[25]
Tsybakov, B.: Resolution of a conflict of known multiplicity. Problemy Peredachi Informatsii (1980).
[26]
Tsybakov, B.S., Mikhailov, V.A.: Free synchronous packet access in a broadcast channel with feedback. Problems of Information Transmission 14(4), 259-280 (1978).
[27]
Wang, D., Comaniciu, C., Tureli, U.: Cooperation and fairness for slotted aloha. Wirel. Pers. Commun. 43(1), 13-27 (2007).
[28]
Zheng, D., Ge, W., Zhang, J.: Distributed opportunistic scheduling for ad-hoc communications: an optimal stopping approach. In: MobiHoc 2007, pp. 1-10. ACM, New York (2007).

Cited By

View all
  • (2012)Contention issues in congestion gamesProceedings of the 39th international colloquium conference on Automata, Languages, and Programming - Volume Part II10.1007/978-3-642-31585-5_55(623-635)Online publication date: 9-Jul-2012

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
ICALP'10: Proceedings of the 37th international colloquium conference on Automata, languages and programming: Part II
July 2010
614 pages
ISBN:3642141617

Sponsors

  • GDR Informatique Mathématique
  • CNRS: Centre National De La Rechercue Scientifique
  • Communauté Urbaine de Bordeaux
  • Conseil Rgional d'Aquitaine
  • INRIA: Institut Natl de Recherche en Info et en Automatique

Publisher

Springer-Verlag

Berlin, Heidelberg

Publication History

Published: 06 July 2010

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)0
  • Downloads (Last 6 weeks)0
Reflects downloads up to 10 Dec 2024

Other Metrics

Citations

Cited By

View all
  • (2012)Contention issues in congestion gamesProceedings of the 39th international colloquium conference on Automata, Languages, and Programming - Volume Part II10.1007/978-3-642-31585-5_55(623-635)Online publication date: 9-Jul-2012

View Options

View options

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media