[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.5555/3310435.3310451acmotherconferencesArticle/Chapter ViewAbstractPublication PagessodaConference Proceedingsconference-collections
research-article

Deterministic (1/2 + ε)-approximation for submodular maximization over a matroid

Published: 06 January 2019 Publication History

Abstract

We study the problem of maximizing a monotone submodular function subject to a matroid constraint and present a deterministic algorithm that achieves (1/2 + ε)-approximation for the problem. This algorithm is the first deterministic algorithm known to improve over the 1/2-approximation ratio of the classical greedy algorithm proved by Nemhauser, Wolsely and Fisher in 1978.

References

[1]
Ashwinkumar Badanidiyuru and Jan Vondrák. Fast algorithms for maximizing submodular functions. In SODA, pages 1497--1514, 2014.
[2]
Richard A. Brualdi. Comments on bases in dependence structures. Bull. of the Australian Math. Soc., 1(02):161--167, 1969.
[3]
Niv Buchbinder and Moran Feldman. Constrained submodular maximization via a non-symmetric technique. CoRR, abs/1611.03253, 2016.
[4]
Niv Buchbinder and Moran Feldman. Deterministic algorithms for submodular maximization problems. ACM Trans. Algorithms, 14(3):32:1--32:20, June 2018.
[5]
Niv Buchbinder, Moran Feldman, and Mohit Garg. Online submodular maximization: Beating 1/2 made simple. CoRR, abs/1807.05529, 2018.
[6]
Niv Buchbinder, Moran Feldman, Joseph Naor, and Roy Schwartz. A tight linear time (1/2)-approximation for unconstrained submodular maximization. SIAM J. Comput., 44(5):1384--1402, 2015.
[7]
Niv Buchbinder, Moran Feldman, Joseph (Seffi) Naor, and Roy Schwartz. Submodular maximization with cardinality constraints. In SODA, pages 1433--1452, 2014.
[8]
Niv Buchbinder, Moran Feldman, and Roy Schwartz. Comparing apples and oranges: Query trade-off in submodular maximization. Math. Oper. Res., 42(2):308--329, 2017.
[9]
Gruia Călinescu, Chandra Chekuri, Martin Pál, and Jan Vondrák. Maximizing a monotone submodular function subject to a matroid constraint. SIAM J. Comput., 40(6):1740--1766, 2011.
[10]
Uriel Feige, Vahab S. Mirrokni, and Jan Vondrák. Maximizing non-monotone submodular functions. SIAM J. Comput., 40(4):1133--1153, 2011.
[11]
Yuval Filmus and Justin Ward. Monotone submodular maximization over a matroid via non-oblivious local search. SIAM J. Comput., 43(2):514--542, 2014.
[12]
M. L. Fisher, G. L. Nemhauser, and L. A. Wolsey. An analysis of approximations for maximizing submodular set functions - II. Mathematical Programming Study, 8:73--87, 1978.
[13]
Shayan Oveis Gharan and Jan Vondrák. Submodular maximization by simulated annealing. In SODA, pages 1098--1116, 2011.
[14]
Curtis Greene. A multiple exchange property for bases. Proceedings of the American Mathematical Society, 39(1), 1973.
[15]
Nitish Korula, Vahab S. Mirrokni, and Morteza Zadi-moghaddam. Online submodular welfare maximization: Greedy beats 1/2 in random order. In STOC, pages 889--898, 2015.
[16]
Jon Lee, Vahab S. Mirrokni, Viswanath Nagarajan, and Maxim Sviridenko. Maximizing nonmonotone submodular functions under matroid or knapsack constraints. SIAM J. Discrete Math.,1 23(4):2053--2078, 2010.
[17]
Baharan Mirzasoleiman, Ashwinkumar Badanidiyuru, Amin Karbasi, Jan Vondrák, and Andreas Krause. Lazier than lazy greedy. In AAAI, pages 1812--1818, 2015.
[18]
Eyal Mizrachi, Roy Schwartz, Joachim Spoerhase, and Sumedha Uniyal. A tight approximation for submodular maximization with mixed packing and covering constraints. CoRR, abs/1804.10947, 2018.
[19]
G. L. Nemhauser and L. A. Wolsey. Best algorithms for approximating the maximum of a submodular set function. Math. Oper. Res., 3(3):177--188, 1978.
[20]
A. Schrijver. Combinatorial Optimization: Polyhedra and Effciency. Springer, 2003.
[21]
Douglas R. Woodall. An exchange theorem for bases of matroids. Journal of Combinatorial Theory (B), 16:227--228, 1974.

Cited By

View all
  • (2021)Approximation Algorithms for Submodular Data Summarization with a Knapsack ConstraintProceedings of the ACM on Measurement and Analysis of Computing Systems10.1145/34473835:1(1-31)Online publication date: 22-Feb-2021
  1. Deterministic (1/2 + ε)-approximation for submodular maximization over a matroid

    Recommendations

    Comments

    Please enable JavaScript to view thecomments powered by Disqus.

    Information & Contributors

    Information

    Published In

    cover image ACM Other conferences
    SODA '19: Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms
    January 2019
    2993 pages

    Sponsors

    • SIAM Activity Group on Discrete Mathematics

    In-Cooperation

    Publisher

    Society for Industrial and Applied Mathematics

    United States

    Publication History

    Published: 06 January 2019

    Check for updates

    Author Tags

    1. deterministic algorithms
    2. matroid
    3. submodular optimization

    Qualifiers

    • Research-article

    Conference

    SODA '19
    Sponsor:
    SODA '19: Symposium on Discrete Algorithms
    January 6 - 9, 2019
    California, San Diego

    Acceptance Rates

    Overall Acceptance Rate 411 of 1,322 submissions, 31%

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)7
    • Downloads (Last 6 weeks)1
    Reflects downloads up to 10 Dec 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2021)Approximation Algorithms for Submodular Data Summarization with a Knapsack ConstraintProceedings of the ACM on Measurement and Analysis of Computing Systems10.1145/34473835:1(1-31)Online publication date: 22-Feb-2021

    View Options

    Login options

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media