[go: up one dir, main page]
More Web Proxy on the site http://driver.im/ skip to main content
10.5555/1143079.1143109guideproceedingsArticle/Chapter ViewAbstractPublication PagesgiConference Proceedingsconference-collections
Article
Free access

Image synthesis using adjoint photons

Published: 07 June 2006 Publication History

Abstract

The most straightforward image synthesis algorithm is to follow photon-like particles from luminaires through the environment. These particles scatter or are absorbed when they interact with a surface or a volume. They contribute to the image if and when they strike a sensor. Such an algorithm implicitly solves the light transport equation. Alternatively. adjoint photons can be traced from the sensor to the luminaires to produce the same image. This "adjoint photon" tracing algorithm is described, and its strengths and weaknesses are discussed, as well as details needed to make adjoint photon tracing practical.

References

[1]
James Arvo. Transfer equations in global illumination. Global Illumination, SIGGRAPH Conference Course Notes, 1993.
[2]
James Arvo and David B. Kirk. Particle transport and image synthesis. In Proceedings of SIGGRAPH, pages 63--66, 1990.
[3]
David Burke, Abhijeet Ghosh, and Wolfgang Heidrich. Bidirectional importance sampling for direct illumination. In Rendering Techniques, pages 147--156, 2005.
[4]
Per H. Christensen. Adjoints and importance in rendering: An overview. IEEE Transactions on Visualization and Computer Graphics, 9(3):329--340, 2003.
[5]
Per H. Christensen, David H. Salesin, and Tony D. DeRose. A continuous adjoint formulation for radiance transport. In Eurographics Workshop on Rendering, pages 95--104, 1993.
[6]
Philip Dutre, Philippe Bekaert, and Kavita Bala. Advanced Global Illumination. AK Peters, 2003.
[7]
Henrik Wann Jensen. Realistic Image Synthesis Using Photon Mapping. AK Peters, 2001.
[8]
Henrik Wann Jensen and Per H. Christensen. Efficient simulation of light transport in scenes with participating media using photon maps. In Proceedings of SIGGRAPH. pages 311--320, 1998.
[9]
James T. Kajiya. The rendering equation. In Proceedings of SIGGRAPH, pages 143--150, 1986.
[10]
Malvin H. Kalos and Paula A. Whitlock. Monte Carlo methods. Vol. 1: basics. Wiley-Interscience, New York, NY, USA, 1986.
[11]
Eric P. Lafortune and Yves D. Willems. Rendering participating media with bidirectional path tracing. In Eurographics Rendering Workshop, pages 91--100, 1996.
[12]
Jason Lawrence, Szymon Rusinkiewicz, and Ravi Ramamoorthi. Efficient brdf importance sampling using a factored representation. ACM Transactions on Graphics, 23(3):496--505, 2004.
[13]
S. N. Pattanaik and S. P. Mudur. The potential equation and importance in illumination computations. Computer Graphics Forum, 12(2):131--136, 1993.
[14]
Mark Pauly, Thomas Kollig, and Alexander Keller. Metropolis light transport for participating media. In Eurographics Workshop on Rendering, pages 11--22, 2000.
[15]
Matt Pharr and Greg Humphreys. Physically Based Rendering. Morgan Kaufmann, 2004.
[16]
Pradeep Sen, Billy Chen, Gaurav Garg, Stephen R. Marschner, Mark Horowitz, Marc Levoy, and Hendrik P. A. Lensch. Dual photography. ACM Transactions on Graphics, 24(3):745--755, 2005.
[17]
Peter Shirley, Changyaw Wang, and Kurt Zimmerman. Monte carlo techniques for direct lighting calculations. ACM Transactions on Graphics, 15(1):1--36, January 1996.
[18]
Brian E. Smits, James R. Arvo, and David H. Salesin. An importance-driven radiosity algorithm. In Proceedings of SIGGRAPH, pages 273--282, 1992.
[19]
Justin Talbot, David Cline, and Parris Egbert. Importance resampling for global illumination. In Rendering Techniques, pages 139--146, 2005.
[20]
Eric Veach. Robust Monte Carlo Methods for Light Transport Simulation. PhD thesis, Stanford University, December 1997.
[21]
Eric Veach and Leonidas J Guibas. Optimally combining sampling techniques for monte carlo rendering. In Proceedings of SIGGRAPH, pages 419--428, 1995.
[22]
Eric Veach and Leonidas J Guibas. Metropolis light transport. In Proceedings of SIGGRAPH, pages 65--76, 1997.
[23]
Bruce Walter, Philip M. Hubbard, Peter Shirley, and Donald F. Greenberg. Global illumination using local linear density estimation. ACM Transactions on Graphics, 16(3):217--259, 1997.

Cited By

View all

Recommendations

Comments

Please enable JavaScript to view thecomments powered by Disqus.

Information & Contributors

Information

Published In

cover image Guide Proceedings
GI '06: Proceedings of Graphics Interface 2006
June 2006
243 pages
ISBN:1568813082

Sponsors

  • CHCCS: The Canadian Human-Computer Communications Society

Publisher

Canadian Information Processing Society

Canada

Publication History

Published: 07 June 2006

Author Tags

  1. adjoint monte carlo methods
  2. global illumination

Qualifiers

  • Article

Acceptance Rates

GI '06 Paper Acceptance Rate 31 of 94 submissions, 33%;
Overall Acceptance Rate 206 of 508 submissions, 41%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)38
  • Downloads (Last 6 weeks)8
Reflects downloads up to 05 Jan 2025

Other Metrics

Citations

Cited By

View all
  • (2018)Sony Pictures Imageworks ArnoldACM Transactions on Graphics10.1145/318049537:3(1-18)Online publication date: 1-Aug-2018
  • (2017)Line Integration for Rendering Heterogeneous Emissive VolumesComputer Graphics Forum10.1111/cgf.1322836:4(101-110)Online publication date: 1-Jul-2017
  • (2012)Importance Sampling Techniques for Path Tracing in Participating MediaComputer Graphics Forum10.1111/j.1467-8659.2012.03148.x31:4(1519-1528)Online publication date: 1-Jun-2012
  • (2010)Stochastic transparencyProceedings of the 2010 ACM SIGGRAPH symposium on Interactive 3D Graphics and Games10.1145/1730804.1730830(157-164)Online publication date: 19-Feb-2010
  • (2007)Accelerated light propagation through participating mediaProceedings of the Sixth Eurographics / Ieee VGTC conference on Volume Graphics10.5555/2386501.2386505(17-23)Online publication date: 3-Sep-2007

View Options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Login options

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media