• Prata D, Rocha M, Ferreira L and Nogueira R. Geospatial Dimension in Association Rule Mining: The Case Study of the Amazon Charcoal Tree. Machine Learning, Optimization, and Data Science. (244-258).

    https://doi.org/10.1007/978-3-030-37599-7_21

  • Wang L, Bao X, Zhou L and Chen H. (2019). Mining maximal sub-prevalent co-location patterns. World Wide Web. 22:5. (1971-1997). Online publication date: 1-Sep-2019.

    https://doi.org/10.1007/s11280-018-0646-2

  • Gowanlock M and Karsin B. GPU-Accelerated Similarity Self-Join for Multi-Dimensional Data. Proceedings of the 15th International Workshop on Data Management on New Hardware. (1-9).

    https://doi.org/10.1145/3329785.3329920

  • Boulaaba A and Faiz S. (2018). Towards Big GeoData Mining and Processing. International Journal of Organizational and Collective Intelligence. 8:2. (60-73). Online publication date: 1-Apr-2018.

    https://doi.org/10.4018/IJOCI.2018040104

  • Tran-The H and Zettsu K. Finding Spatiotemporal Co-occurrence Patterns of Heterogeneous Events for Prediction. Proceedings of the 3rd ACM SIGSPATIAL International Workshop on the Use of GIS in Emergency Management. (1-8).

    https://doi.org/10.1145/3152465.3152475

  • Aydin B, Kucuk A, Angryk R and Martens P. (2017). Measuring the Significance of Spatiotemporal Co-Occurrences. ACM Transactions on Spatial Algorithms and Systems. 3:3. (1-35). Online publication date: 30-Sep-2017.

    https://doi.org/10.1145/3139351

  • Usman A, Zhang P and Theel O. An efficient and updatable item-to-item frequency matrix for frequent itemset generation. Proceedings of the Second International Conference on Internet of things, Data and Cloud Computing. (1-6).

    https://doi.org/10.1145/3018896.3025133

  • Balasubramani B, Shivaprabhu V, Krishnamurthy S, Cruz I and Malik T. Ontology-based urban data exploration. Proceedings of the 2nd ACM SIGSPATIAL Workshop on Smart Cities and Urban Analytics. (1-8).

    https://doi.org/10.1145/3007540.3007550

  • Li J, Adilmagambetov A, Mohomed Jabbar M, Zaïane O, Osornio-Vargas A and Wine O. (2016). On discovering co-location patterns in datasets. Geoinformatica. 20:4. (651-692). Online publication date: 1-Oct-2016.

    https://doi.org/10.1007/s10707-016-0254-1

  • Kumar N and Sathya S. COPMOC. Proceedings of the International Conference on Informatics and Analytics. (1-8).

    https://doi.org/10.1145/2980258.2980449

  • Saxena A, Goyal V and Bera D. Mintra. Proceedings of the 20th International Database Engineering & Applications Symposium. (105-114).

    https://doi.org/10.1145/2938503.2938551

  • Yu W. (2016). Spatial co-location pattern mining for location-based services in road networks. Expert Systems with Applications: An International Journal. 46:C. (324-335). Online publication date: 15-Mar-2016.

    https://doi.org/10.1016/j.eswa.2015.10.010

  • Lopera Gonzalez L and Amft O. (2016). Mining hierarchical relations in building management variables. Pervasive and Mobile Computing. 26:C. (91-101). Online publication date: 1-Feb-2016.

    https://doi.org/10.1016/j.pmcj.2015.10.009

  • Chen B, Chuang A and Chuang K. Discovery of Spatiotemporal Chaining Patterns. Proceedings of the ASE BigData & SocialInformatics 2015. (1-10).

    https://doi.org/10.1145/2818869.2818876

  • Shishehgar M, Mirmohammadi S and Ghapanchi A. (2015). A survey on data mining and knowledge discovery techniques for spatial data. International Journal of Business Information Systems. 19:2. (265-276). Online publication date: 1-May-2015.

    https://doi.org/10.1504/IJBIS.2015.069434

  • Sundaram V and Thangavelu A. (2015). A Delaunay diagram-based Min-Max CP-Tree algorithm for Spatial Data Analysis. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery. 5:3. (142-154). Online publication date: 1-May-2015.

    https://doi.org/10.1002/widm.1151

  • Barua S and Sander J. Mining statistically sound co-location patterns at multiple distances. Proceedings of the 26th International Conference on Scientific and Statistical Database Management. (1-12).

    https://doi.org/10.1145/2618243.2618261

  • Sengstock C and Gertz M. Spatial Itemset Mining. Proceedings of the 17th East European Conference on Advances in Databases and Information Systems - Volume 8133. (148-161).

    https://doi.org/10.1007/978-3-642-40683-6_12

  • Adilmagambetov A, Zaiane O and Osornio-Vargas A. Discovering Co-location Patterns in Datasets with Extended Spatial Objects. Proceedings of the 15th International Conference on Data Warehousing and Knowledge Discovery - Volume 8057. (84-96).

    https://doi.org/10.1007/978-3-642-40131-2_8

  • Venkatesan M and Thangavelu A. (2013). A multiple window-based co-location pattern mining approach for various types of spatial data. International Journal of Computer Applications in Technology. 48:2. (144-154). Online publication date: 1-Aug-2013.

    https://doi.org/10.1504/IJCAT.2013.056022

  • Dong W, Fan W, Shi L, Zhou C and Yan X. A general framework to encode heterogeneous information sources for contextual pattern mining. Proceedings of the 21st ACM international conference on Information and knowledge management. (65-74).

    https://doi.org/10.1145/2396761.2396774

  • Maervoet J, Vens C, Vanden Berghe G, Blockeel H and De Causmaecker P. (2012). Outlier detection in relational data. Expert Systems with Applications: An International Journal. 39:5. (4718-4728). Online publication date: 1-Apr-2012.

    https://doi.org/10.1016/j.eswa.2011.09.125

  • Desmier E, Flouvat F, Gay D and Selmaoui-Folcher N. A clustering-based visualization of colocation patterns. Proceedings of the 15th Symposium on International Database Engineering & Applications. (70-78).

    https://doi.org/10.1145/2076623.2076633

  • Barua S and Sander J. SSCP. Proceedings of the 12th international conference on Advances in spatial and temporal databases. (2-20).

    /doi/10.5555/2035253.2035257

  • Malerba D, Ceci M and Appice A. Relational mining in spatial domains. Proceedings of the 19th international conference on Foundations of intelligent systems. (16-24).

    /doi/10.5555/2029759.2029762

  • Yoo J and Bow M. Mining maximal co-located event sets. Proceedings of the 15th Pacific-Asia conference on Advances in knowledge discovery and data mining - Volume Part I. (351-362).

    /doi/10.5555/2017863.2017897

  • Singh R and Sharma K. Geospatial knowledge discovery framework for crime domain. Transactions on computational science XIII. (191-204).

    /doi/10.5555/2028176.2028189

  • Hampapur A, Cao H, Davenport A, Dong W, Fenhagen D, Feris R, Goldszmidt G, Jiang Z, Kalagnanam J, Kumar T, Li H, Liu X, Mahatma S, Pankanti S, Pelleg D, Sun W, Taylor M, Tian C, Wasserkrug S, Xie L, Lodhi M, Kiely C, Butturff K and Desjardins L. (2011). Analytics-driven asset management. IBM Journal of Research and Development. 55:1&2. (138-156). Online publication date: 1-Jan-2011.

    https://doi.org/10.1147/JRD.2010.2092173

  • Morimoto Y. (2010). Co-location pattern mining for unevenly distributed data: algorithm, experiments and applications. International Journal of Computational Science and Engineering. 5:3/4. (185-196). Online publication date: 1-Dec-2010.

    https://doi.org/10.1504/IJCSE.2010.037674

  • Shan M and Wei L. (2010). Algorithms for discovery of spatial co-orientation patterns from images. Expert Systems with Applications: An International Journal. 37:8. (5795-5802). Online publication date: 1-Aug-2010.

    https://doi.org/10.1016/j.eswa.2010.02.028

  • Flouvat F, Selmaoui-Folcher N, Gay D, Rouet I and Grison C. Constrained colocation mining. Proceedings of the 2010 ACM Symposium on Applied Computing. (1054-1059).

    https://doi.org/10.1145/1774088.1774308

  • Wang L, Zhou L, Lu J and Yip J. (2009). An order-clique-based approach for mining maximal co-locations. Information Sciences: an International Journal. 179:19. (3370-3382). Online publication date: 1-Sep-2009.

    https://doi.org/10.1016/j.ins.2009.05.023

  • Chang C and Shyue S. Association rules mining with GIS. Proceedings of the 6th international conference on Fuzzy systems and knowledge discovery - Volume 2. (65-69).

    /doi/10.5555/1800614.1800629

  • Phillips P and Lee I. Mining top-k and Bottom-k correlative crime patternsthrough graph representations. Proceedings of the 2009 IEEE international conference on Intelligence and security informatics. (25-30).

    /doi/10.5555/1706428.1706433

  • Lee A, Liu Y, Tsai H, Lin H and Wu H. (2009). Mining frequent patterns in image databases with 9D-SPA representation. Journal of Systems and Software. 82:4. (603-618). Online publication date: 1-Apr-2009.

    https://doi.org/10.1016/j.jss.2008.08.028

  • Lin Z and Lim S. Optimal candidate generation in spatial co-location mining. Proceedings of the 2009 ACM symposium on Applied Computing. (1441-1445).

    https://doi.org/10.1145/1529282.1529604

  • Zarnani A, Rahgozar M, Lucas C and Taghiyareh F. (2009). Effective spatial clustering methods for optimal facility establishment. Intelligent Data Analysis. 13:1. (61-84). Online publication date: 1-Jan-2009.

    /doi/10.5555/1551758.1551762

  • Wan Y and Zhou J. (2008). KNFCOM-T: a k-nearest features-based co-location pattern mining algorithm for large spatial data sets by using T-trees. International Journal of Business Intelligence and Data Mining. 3:4. (375-389). Online publication date: 1-Jan-2009.

    https://doi.org/10.1504/IJBIDM.2008.022735

  • Xiao X, Xie X, Luo Q and Ma W. Density based co-location pattern discovery. Proceedings of the 16th ACM SIGSPATIAL international conference on Advances in geographic information systems. (1-10).

    https://doi.org/10.1145/1463434.1463471

  • Jacox E and Samet H. (2008). Metric space similarity joins. ACM Transactions on Database Systems. 33:2. (1-38). Online publication date: 1-Jun-2008.

    https://doi.org/10.1145/1366102.1366104

  • Del Fatto V, Laurini R, Lopez K, Sibillo M and Vitiello G. (2008). A chorem-based approach for visually synthesizing complex phenomena. Information Visualization. 7:3. (253-264). Online publication date: 1-Jun-2008.

    https://doi.org/10.1057/palgrave.ivs.9500186

  • Ding W, Jiamthapthaksin R, Parmar R, Jiang D, Stepinski T and Eick C. Towards region discovery in spatial datasets. Proceedings of the 12th Pacific-Asia conference on Advances in knowledge discovery and data mining. (88-99).

    /doi/10.5555/1786574.1786587

  • Chen Y, Huang T and Chang S. (2008). A novel approach for discovering retail knowledge with price information from transaction databases. Expert Systems with Applications: An International Journal. 34:4. (2350-2359). Online publication date: 1-May-2008.

    https://doi.org/10.1016/j.eswa.2007.03.006

  • Zhang Z, Wu W and Huang Y. Effective spatio-temporal analysis of remote sensing data. Proceedings of the 10th Asia-Pacific web conference on Progress in WWW research and development. (584-589).

    /doi/10.5555/1791734.1791802

  • Bogorny V, Kuijpers B and Alvares L. (2008). Reducing uninteresting spatial association rules in geographic databases using background knowledge. International Journal of Geographical Information Science. 22:4. (361-386). Online publication date: 1-Apr-2008.

    https://doi.org/10.1080/13658810701412991

  • Sheng C, Hsu W, Lee M and Tung A. Discovering spatial interaction patterns. Proceedings of the 13th international conference on Database systems for advanced applications. (95-109).

    /doi/10.5555/1802514.1802528

  • Roddick J and Fule P. SemGrAM. Proceedings of the sixth Australasian conference on Data mining and analytics - Volume 70. (129-137).

    /doi/10.5555/1378245.1378263

  • Wang L, Lu J, Lu J and Yip J. AOG-ags Algorithms and Applications. Proceedings of the 3rd international conference on Advanced Data Mining and Applications. (323-334).

    https://doi.org/10.1007/978-3-540-73871-8_30

  • Wilson D, Doyle J, Weakliam J, Bertolotto M and Lynch D. (2007). Personalised maps in multimodal mobile GIS. International Journal of Web Engineering and Technology. 3:2. (196-216). Online publication date: 1-Jan-2007.

    https://doi.org/10.1504/IJWET.2007.012054

  • Taniar D and Goh J. (2007). On Mining Movement Pattern from Mobile Users. International Journal of Distributed Sensor Networks. 3:1. (69-86). Online publication date: 1-Jan-2007.

    https://doi.org/10.1080/15501320601069499

  • Chen Y, Chen J and Tung C. (2006). A data mining approach for retail knowledge discovery with consideration of the effect of shelf-space adjacency on sales. Decision Support Systems. 42:3. (1503-1520). Online publication date: 1-Dec-2006.

    https://doi.org/10.1016/j.dss.2005.12.004

  • Bogorny V, Camargo S, Engel P and Alvares L. Mining frequent geographic patterns with knowledge constraints. Proceedings of the 14th annual ACM international symposium on Advances in geographic information systems. (139-146).

    https://doi.org/10.1145/1183471.1183495

  • Morzy M. Prediction of moving object location based on frequent trajectories. Proceedings of the 21st international conference on Computer and Information Sciences. (583-592).

    https://doi.org/10.1007/11902140_62

  • Yoo J and Shekhar S. (2006). A Joinless Approach for Mining Spatial Colocation Patterns. IEEE Transactions on Knowledge and Data Engineering. 18:10. (1323-1337). Online publication date: 1-Oct-2006.

    https://doi.org/10.1109/TKDE.2006.150

  • Zarnani A, Rahgozar M, Lucas C and Memariani A. AntTrend. Proceedings of the 16th international conference on Foundations of Intelligent Systems. (91-100).

    https://doi.org/10.1007/11875604_12

  • Zhanquan W, Huiqun Y and Haibo C. Research of local co-location pattern in spatial event sequences. Proceedings of the Third international conference on Fuzzy Systems and Knowledge Discovery. (578-581).

    https://doi.org/10.1007/11881599_68

  • Zarnani A, Rahgozar M and Lucas C. Nature-Inspired approaches to mining trend patterns in spatial databases. Proceedings of the 7th international conference on Intelligent Data Engineering and Automated Learning. (1407-1414).

    https://doi.org/10.1007/11875581_167

  • Qu Z and Wang L. Research on spatial data mining based on knowledge discovery. Proceedings of the 2006 international conference on Intelligent computing: Part II. (946-951).

    /doi/10.5555/1882540.1882670

  • Li X, Han J and Kim S. Motion-Alert. Proceedings of the 4th IEEE international conference on Intelligence and Security Informatics. (166-177).

    https://doi.org/10.1007/11760146_15

  • Goh J and Taniar D. On mining 2 step walking pattern from mobile users. Proceedings of the 6th international conference on Computational Science and Its Applications - Volume Part I. (1090-1099).

    https://doi.org/10.1007/11751540_119

  • Goh J, Taniar D and Lim E. SGPM. Proceedings of the 10th Pacific-Asia conference on Advances in Knowledge Discovery and Data Mining. (415-424).

    https://doi.org/10.1007/11731139_48

  • Nhan V, Chi J and Ryu K. Discovery of spatiotemporal patterns in mobile environment. Proceedings of the 8th Asia-Pacific Web conference on Frontiers of WWW Research and Development. (949-954).

    /doi/10.5555/2114193.2114296

  • Lattner A, Miene A, Visser U and Herzog O. Sequential pattern mining for situation and behavior prediction in simulated robotic soccer. RoboCup 2005. (118-129).

    /doi/10.5555/2124160.2124175

  • Weakliam J, Lynch D, Doyle J, Bertolotto M and Wilson D. Delivering personalized context-aware spatial information to mobile devices. Proceedings of the 5th international conference on Web and Wireless Geographical Information Systems. (194-205).

    https://doi.org/10.1007/11599289_17

  • Goh J and Taniar D. Mobile user data mining. Proceedings of the 2005 international conference on Embedded and Ubiquitous Computing. (735-744).

    https://doi.org/10.1007/11596356_73

  • Yoo J, Shekhar S and Celik M. A Join-Less Approach for Co-Location Pattern Mining. Proceedings of the Fifth IEEE International Conference on Data Mining. (813-816).

    https://doi.org/10.1109/ICDM.2005.8

  • Weakliam J, Bertolotto M and Wilson D. Implicit interaction profiling for recommending spatial content. Proceedings of the 13th annual ACM international workshop on Geographic information systems. (285-294).

    https://doi.org/10.1145/1097064.1097104

  • Rinzivillo S and Turini F. Extracting spatial association rules from spatial transactions. Proceedings of the 13th annual ACM international workshop on Geographic information systems. (79-86).

    https://doi.org/10.1145/1097064.1097077

  • Wang J, Hsu W and Lee M. A framework for mining topological patterns in spatio-temporal databases. Proceedings of the 14th ACM international conference on Information and knowledge management. (429-436).

    https://doi.org/10.1145/1099554.1099680

  • Weakliam J and Wilson D. Using data mining for modeling personalized maps. Proceedings of the 24th international conference on Perspectives in Conceptual Modeling. (290-299).

    https://doi.org/10.1007/11568346_31

  • Gidófalvi G and Pedersen T. Spatio–temporal rule mining. Proceedings of the 7th international conference on Data Warehousing and Knowledge Discovery. (275-284).

    https://doi.org/10.1007/11546849_27

  • Chen Y, Tang K, Shen R and Hu Y. (2005). Market basket analysis in a multiple store environment. Decision Support Systems. 40:2. (339-354). Online publication date: 1-Aug-2005.

    https://doi.org/10.1016/j.dss.2004.04.009

  • Yang H, Parthasarathy S and Mehta S. Mining spatial object associations for scientific data. Proceedings of the 19th international joint conference on Artificial intelligence. (902-907).

    /doi/10.5555/1642293.1642438

  • Appice A, Berardi M, Ceci M and Malerba D. Mining and filtering multi-level spatial association rules with ARES. Proceedings of the 15th international conference on Foundations of Intelligent Systems. (342-353).

    https://doi.org/10.1007/11425274_36

  • Takahashi K, Pramudiono I and Kitsuregawa M. Geo-word centric association rule mining. Proceedings of the 6th international conference on Mobile data management. (273-280).

    https://doi.org/10.1145/1071246.1071290

  • Goh J and Taniar D. Mining patterns of mobile users through mobile devices and the musics they listens. Proceedings of the 2005 international conference on Computational Science and Its Applications - Volume Part IV. (1203-1211).

    https://doi.org/10.1007/11424925_125

  • Wang X and Hamilton H. A comparative study of two density-based spatial clustering algorithms for very large datasets. Proceedings of the 18th Canadian Society conference on Advances in Artificial Intelligence. (120-132).

    https://doi.org/10.1007/11424918_14

  • Wang J, Hsu W and Lee M. Mining generalized spatio-temporal patterns. Proceedings of the 10th international conference on Database Systems for Advanced Applications. (649-661).

    https://doi.org/10.1007/11408079_60

  • Goh J and Taniar D. An efficient mobile data mining model. Proceedings of the Second international conference on Parallel and Distributed Processing and Applications. (54-58).

    https://doi.org/10.1007/978-3-540-30566-8_10

  • Huang Y, Shekhar S and Xiong H. (2004). Discovering Colocation Patterns from Spatial Data Sets. IEEE Transactions on Knowledge and Data Engineering. 16:12. (1472-1485). Online publication date: 1-Dec-2004.

    https://doi.org/10.1109/TKDE.2004.90

  • Zhang X, Mamoulis N, Cheung D and Shou Y. Fast mining of spatial collocations. Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining. (384-393).

    https://doi.org/10.1145/1014052.1014095

  • Lisi F and Malerba D. (2004). Inducing Multi-Level Association Rules from Multiple Relations. Machine Language. 55:2. (175-210). Online publication date: 1-May-2004.

    https://doi.org/10.1023/B:MACH.0000023151.65011.a3

  • Nanni M, Raffaetà A, Renso C and Turini F. Deductive and inductive reasoning on spatio-temporal data. Proceedings of the 15th international conference on Applications of Declarative Programming and Knowledge Management, and 18th international conference on Workshop on Logic Programming. (98-115).

    https://doi.org/10.1007/11415763_7

  • Munro R, Chawla S and Sun P. Complex Spatial Relationships. Proceedings of the Third IEEE International Conference on Data Mining.

    /doi/10.5555/951949.952166

  • Zhao J, Lu C and Kou Y. Detecting region outliers in meteorological data. Proceedings of the 11th ACM international symposium on Advances in geographic information systems. (49-55).

    https://doi.org/10.1145/956676.956683

  • Hsu W, Dai J and Lee M. Mining viewpoint patterns in image databases. Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining. (553-558).

    https://doi.org/10.1145/956750.956818

  • Wang X and Hamilton H. DBRS. Proceedings of the 7th Pacific-Asia conference on Advances in knowledge discovery and data mining. (563-575).

    /doi/10.5555/1760894.1760968

  • Huang Y, Xiong H, Shekhar S and Pei J. Mining confident co-location rules without a support threshold. Proceedings of the 2003 ACM symposium on Applied computing. (497-501).

    https://doi.org/10.1145/952532.952630

  • Ding Q, Ding Q and Perrizo W. Association Rule Mining on Remotely Sensed Images Using P-trees. Proceedings of the 6th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining. (66-79).

    /doi/10.5555/646420.693822

  • Wijesekera D and Barbará D. Multimedia applications. Handbook of data mining and knowledge discovery. (758-769).

    /doi/10.5555/778212.778322

  • Ester M. Data mining tasks and methods. Handbook of data mining and knowledge discovery. (409-418).

    /doi/10.5555/778212.778275

  • Klösgen W. Types and forms of data. Handbook of data mining and knowledge discovery. (33-44).

    /doi/10.5555/778212.778219

  • Theodoridis Y. Seismo-surfer. Proceedings of the 8th Panhellenic conference on Informatics. (159-171).

    /doi/10.5555/1756269.1756280

  • Morimoto Y. Mining frequent neighboring class sets in spatial databases. Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining. (353-358).

    https://doi.org/10.1145/502512.502564

  • Lin X, Zhou X, Liu C and Zhou X. Efficiently Computing Weighted Proximity Relationships in Spatial Databases. Proceedings of the Second International Conference on Advances in Web-Age Information Management. (279-290).

    /doi/10.5555/645940.671402

  • Böhm C, Braunmüller B, Krebs F and Kriegel H. (2001). Epsilon grid order. ACM SIGMOD Record. 30:2. (379-388). Online publication date: 1-Jun-2001.

    https://doi.org/10.1145/376284.375714

  • Böhm C, Braunmüller B, Krebs F and Kriegel H. Epsilon grid order. Proceedings of the 2001 ACM SIGMOD international conference on Management of data. (379-388).

    https://doi.org/10.1145/375663.375714

  • Braunmüller B, Ester M, Kriegel H and Sander J. (2001). Multiple Similarity Queries. IEEE Transactions on Knowledge and Data Engineering. 13:1. (79-95). Online publication date: 1-Jan-2001.

    https://doi.org/10.1109/69.908982

  • Böhm C, Braunmüller B, Breunig M and Kriegel H. High performance clustering based on the similarity join. Proceedings of the ninth international conference on Information and knowledge management. (298-305).

    https://doi.org/10.1145/354756.354832

  • Stefanovic N, Han J and Koperski K. (2000). Object-Based Selective Materialization for Efficient Implementation of Spatial Data Cubes. IEEE Transactions on Knowledge and Data Engineering. 12:6. (938-958). Online publication date: 1-Nov-2000.

    https://doi.org/10.1109/69.895803

  • Salleb A and Vrain C. An Application of Association Rules Discovery to Geographic Information Systems. Proceedings of the 4th European Conference on Principles of Data Mining and Knowledge Discovery. (613-618).

    /doi/10.5555/645804.669830

  • Ester M, Frommelt A, Kriegel H and Sander J. (2000). Spatial Data Mining. Data Mining and Knowledge Discovery. 4:2-3. (193-216). Online publication date: 1-Jul-2000.

    https://doi.org/10.1023/A:1009843930701

  • Zhou A, Zhou S, Jin W and Tian Z. (2023). Generalized multidimensional association rules. Journal of Computer Science and Technology. 15:4. (388-392). Online publication date: 1-Jul-2000.

    https://doi.org/10.1007/BF02948876

  • Han J and Fu Y. (1999). Mining Multiple-Level Association Rules in Large Databases. IEEE Transactions on Knowledge and Data Engineering. 11:5. (798-805). Online publication date: 1-Sep-1999.

    https://doi.org/10.1109/69.806937

  • Roddick J and Spiliopoulou M. (1999). A bibliography of temporal, spatial and spatio-temporal data mining research. ACM SIGKDD Explorations Newsletter. 1:1. (34-38). Online publication date: 1-Jun-1999.

    https://doi.org/10.1145/846170.846173

  • Plazanet C, Bigolin N and Ruas A. (1998). Experiments with Learning Techniques for Spatial Model Enrichment and Line Generalization. Geoinformatica. 2:4. (315-333). Online publication date: 1-Dec-1998.

    https://doi.org/10.1023/A:1009753320636

  • Zaïane O, Han J, Li Z and Hou J. Mining multimedia data. Proceedings of the 1998 conference of the Centre for Advanced Studies on Collaborative research.

    /doi/10.5555/783160.783184

  • Ester M, Frommelt A, Kriegel H and Sander J. Algorithms for characterization and trend detection in spatial databases. Proceedings of the Fourth International Conference on Knowledge Discovery and Data Mining. (44-50).

    /doi/10.5555/3000292.3000300

  • Han J, Koperski K and Stefanovic N. (1997). GeoMiner. ACM SIGMOD Record. 26:2. (553-556). Online publication date: 1-Jun-1997.

    https://doi.org/10.1145/253262.253404

  • Han J, Koperski K and Stefanovic N. GeoMiner. Proceedings of the 1997 ACM SIGMOD international conference on Management of data. (553-556).

    https://doi.org/10.1145/253260.253404

  • Chen M, Han J and Yu P. (1996). Data Mining. IEEE Transactions on Knowledge and Data Engineering. 8:6. (866-883). Online publication date: 1-Dec-1996.

    https://doi.org/10.1109/69.553155

  • Han J. Mining knowledge at multiple concept levels. Proceedings of the fourth international conference on Information and knowledge management. (19-24).

    https://doi.org/10.1145/221270.221287