• Orr L, Balazinska M and Suciu D. Sample Debiasing in the Themis Open World Database System. Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data. (257-268).

    https://doi.org/10.1145/3318464.3380606

  • Barik A and Honorio J. Learning Bayesian networks with low rank conditional probability tables. Proceedings of the 33rd International Conference on Neural Information Processing Systems. (8964-8973).

    /doi/10.5555/3454287.3455091

  • Xu S, Jia B and Liang F. (2019). Learning moral graphs in construction of high-dimensional bayesian networks for mixed data. Neural Computation. 31:6. (1183-1214). Online publication date: 1-Jun-2019.

    https://doi.org/10.1162/neco_a_01190

  • Contaldi C, Vafaee F and Nelson P. (2019). Bayesian network hybrid learning using an elite-guided genetic algorithm. Artificial Intelligence Review. 52:1. (245-272). Online publication date: 1-Jun-2019.

    https://doi.org/10.1007/s10462-018-9615-5

  • Li S and Wang B. (2018). Hybrid Parrallel Bayesian Network Structure Learning from Massive Data Using MapReduce. Journal of Signal Processing Systems. 90:8-9. (1115-1121). Online publication date: 1-Sep-2018.

    https://doi.org/10.1007/s11265-017-1275-1

  • Orphanou K, Thierens D and Bosman P. Learning bayesian network structures with GOMEA. Proceedings of the Genetic and Evolutionary Computation Conference. (1007-1014).

    https://doi.org/10.1145/3205455.3205502

  • Khanteymoori A, Olyaee M, Abbaszadeh O and Valian M. (2018). A novel method for Bayesian networks structure learning based on Breeding Swarm algorithm. Soft Computing - A Fusion of Foundations, Methodologies and Applications. 22:9. (3049-3060). Online publication date: 1-May-2018.

    https://doi.org/10.1007/s00500-017-2557-z

  • Contaldi C, Vafaee F and Nelson P. The role of crossover operator in bayesian network structure learning performance. Proceedings of the Genetic and Evolutionary Computation Conference. (769-776).

    https://doi.org/10.1145/3071178.3071240

  • Wang R, Azab A, Enck W, Li N, Ning P, Chen X, Shen W and Cheng Y. SPOKE. Proceedings of the 2017 ACM on Asia Conference on Computer and Communications Security. (612-624).

    https://doi.org/10.1145/3052973.3052991

  • Park G and Raskutti G. (2017). Learning quadratic variance function (QVF) DAG models via overdispersion scoring (ODS). The Journal of Machine Learning Research. 18:1. (8300-8342). Online publication date: 1-Jan-2017.

    /doi/10.5555/3122009.3242081

  • Nie S, de Campos C and Ji Q. (2017). Efficient learning of Bayesian networks with bounded tree-width. International Journal of Approximate Reasoning. 80:C. (412-427). Online publication date: 1-Jan-2017.

    https://doi.org/10.1016/j.ijar.2016.07.002

  • Park G and Raskutti G. Learning large-scale Poisson DAG models based on overdispersion scoring. Proceedings of the 29th International Conference on Neural Information Processing Systems - Volume 1. (631-639).

    /doi/10.5555/2969239.2969310

  • Malone B, Järvisalo M and Myllymäki P. Impact of learning strategies on the quality of Bayesian networks. Proceedings of the Thirty-First Conference on Uncertainty in Artificial Intelligence. (562-571).

    /doi/10.5555/3020847.3020906

  • Chickering D and Meek C. Selective Greedy Equivalence Search. Proceedings of the Thirty-First Conference on Uncertainty in Artificial Intelligence. (211-219).

    /doi/10.5555/3020847.3020870

  • Liang K, Bai Z, Çavuşoğlu M, Podgurski A and Ray S. Fault localization in embedded control system software. Proceedings of the First International Workshop on Software Engineering for Smart Cyber-Physical Systems. (8-14).

    /doi/10.5555/2821404.2821409

  • Misra S, Md. V, Pamnany K, Chockalingam S, Dong Y, Xie M, Aluru M and Aluru S. Parallel bayesian network structure learning for genome-scale gene networks. Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis. (461-472).

    https://doi.org/10.1109/SC.2014.43

  • Gasse M, Aussem A and Elghazel H. (2014). A hybrid algorithm for Bayesian network structure learning with application to multi-label learning. Expert Systems with Applications: An International Journal. 41:15. (6755-6772). Online publication date: 1-Nov-2014.

    https://doi.org/10.1016/j.eswa.2014.04.032

  • Vafaee F. Learning the structure of large-scale bayesian networks using genetic algorithm. Proceedings of the 2014 Annual Conference on Genetic and Evolutionary Computation. (855-862).

    https://doi.org/10.1145/2576768.2598223

  • Xiang J and Kim S. A* lasso for learning a sparse Bayesian network structure for continuous variables. Proceedings of the 27th International Conference on Neural Information Processing Systems - Volume 2. (2418-2426).

    /doi/10.5555/2999792.2999882

  • Alonso-Barba J, Delaossa L, GáMez J and Puerta J. (2013). Scaling up the Greedy Equivalence Search algorithm by constraining the search space of equivalence classes. International Journal of Approximate Reasoning. 54:4. (429-451). Online publication date: 1-Jun-2013.

    https://doi.org/10.1016/j.ijar.2012.09.004

  • Carmi A. (2013). Compressive system identification. Digital Signal Processing. 23:3. (751-770). Online publication date: 1-May-2013.

    https://doi.org/10.1016/j.dsp.2012.12.006

  • Hemberg E, Berzan C, Veeramachaneni K and O'Reilly U. Introducing graphical models to analyze genetic programming dynamics. Proceedings of the twelfth workshop on Foundations of genetic algorithms XII. (75-86).

    https://doi.org/10.1145/2460239.2460247

  • Nikolova O and Aluru S. Parallel Bayesian network structure learning with application to gene networks. Proceedings of the International Conference on High Performance Computing, Networking, Storage and Analysis. (1-9).

    /doi/10.5555/2388996.2389082

  • Gomez-Rodriguez M, Leskovec J and Krause A. (2012). Inferring Networks of Diffusion and Influence. ACM Transactions on Knowledge Discovery from Data. 5:4. (1-37). Online publication date: 1-Feb-2012.

    https://doi.org/10.1145/2086737.2086741

  • Shi D, Tan S and Li S. (2012). Financial Data Modeling using a Hybrid Bayesian Network Structured Learning Algorithm. International Journal of Cognitive Informatics and Natural Intelligence. 6:1. (48-71). Online publication date: 1-Jan-2012.

    https://doi.org/10.4018/jcini.2012010103

  • Aussem A, De Morais S and Corbex M. (2012). Analysis of nasopharyngeal carcinoma risk factors with Bayesian networks. Artificial Intelligence in Medicine. 54:1. (53-62). Online publication date: 1-Jan-2012.

    https://doi.org/10.1016/j.artmed.2011.09.002

  • Anandkumar A, Chaudhuri K, Hsu D, Kakade S, Song L and Zhang T. Spectral methods for learning multivariate latent tree structure. Proceedings of the 25th International Conference on Neural Information Processing Systems. (2025-2033).

    /doi/10.5555/2986459.2986685

  • Schnitzler F, Ammar S, Leray P, Geurts P and Wehenkel L. Efficiently approximating Markov tree bagging for high-dimensional density estimation. Proceedings of the 2011 European conference on Machine learning and knowledge discovery in databases - Volume Part III. (113-128).

    /doi/10.5555/2034161.2034170

  • Schnitzler F, Ammar S, Leray P, Geurts P and Wehenkel L. Efficiently approximating Markov tree bagging for high-dimensional density estimation. Proceedings of the 2011th European Conference on Machine Learning and Knowledge Discovery in Databases - Volume Part III. (113-128).

    https://doi.org/10.1007/978-3-642-23808-6_8

  • Huang S, Li J, Ye J, Fleisher A, Chen K, Wu T and Reiman E. Brain effective connectivity modeling for alzheimer's disease by sparse gaussian bayesian network. Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining. (931-939).

    https://doi.org/10.1145/2020408.2020562

  • Malone B, Yuan C, Hansen E and Bridges S. Improving the scalability of optimal Bayesian network learning with external-memory frontier breadth-first branch and bound search. Proceedings of the Twenty-Seventh Conference on Uncertainty in Artificial Intelligence. (479-488).

    /doi/10.5555/3020548.3020604

  • Patnaik D, Marwah M, Sharma R and Ramakrishnan N. (2011). Temporal data mining approaches for sustainable chiller management in data centers. ACM Transactions on Intelligent Systems and Technology. 2:4. (1-29). Online publication date: 1-Jul-2011.

    https://doi.org/10.1145/1989734.1989738

  • Ammar S and Leray P. Mixture of Markov trees for Bayesian network structure learning with small datasets in high dimensional space. Proceedings of the 11th European conference on Symbolic and quantitative approaches to reasoning with uncertainty. (229-238).

    /doi/10.5555/2026067.2026090

  • Alonso-Barba J, De La Ossa L, Gámez J and Puerta J. Scaling up the greedy equivalence search algorithm by constraining the search space of equivalence classes. Proceedings of the 11th European conference on Symbolic and quantitative approaches to reasoning with uncertainty. (194-205).

    /doi/10.5555/2026067.2026087

  • Yang J and Li L. A partial correlation-based Bayesian network structure learning algorithm under SEM. Proceedings of the 15th Pacific-Asia conference on Advances in knowledge discovery and data mining - Volume Part II. (63-74).

    /doi/10.5555/2022850.2022856

  • Vidaurre D, Bielza C and Larrañaga P. (2010). Learning an L1-regularized Gaussian Bayesian network in the equivalence class space. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics. 40:5. (1231-1242). Online publication date: 1-Oct-2010.

    https://doi.org/10.1109/TSMCB.2009.2036593

  • De Morais S and Aussem A. An efficient and scalable algorithm for local Bayesian network structure discovery. Proceedings of the 2010 European conference on Machine learning and knowledge discovery in databases: Part III. (164-179).

    /doi/10.5555/1889788.1889800

  • de Morais S and Aussem A. An efficient and scalable algorithm for local Bayesian network structure discovery. Proceedings of the 2010th European Conference on Machine Learning and Knowledge Discovery in Databases - Volume Part III. (164-179).

    https://doi.org/10.1007/978-3-642-15939-8_11

  • Gomez Rodriguez M, Leskovec J and Krause A. Inferring networks of diffusion and influence. Proceedings of the 16th ACM SIGKDD international conference on Knowledge discovery and data mining. (1019-1028).

    https://doi.org/10.1145/1835804.1835933

  • Schulte O, Frigo G, Greiner R and Khosravi H. The IMAP hybrid method for learning gaussian bayes nets. Proceedings of the 23rd Canadian conference on Advances in Artificial Intelligence. (123-134).

    https://doi.org/10.1007/978-3-642-13059-5_14

  • Patnaik D, Marwah M, Sharma R and Ramakrishnan N. Data mining for modeling chiller systems in data centers. Proceedings of the 9th international conference on Advances in Intelligent Data Analysis. (125-136).

    https://doi.org/10.1007/978-3-642-13062-5_13

  • Duangsoithong R and Windeatt T. Correlation-based and causal feature selection analysis for ensemble classifiers. Proceedings of the 4th IAPR TC3 conference on Artificial Neural Networks in Pattern Recognition. (25-36).

    https://doi.org/10.1007/978-3-642-12159-3_3

  • Visweswaran S and Cooper G. (2010). Learning Instance-Specific Predictive Models. The Journal of Machine Learning Research. 11. (3333-3369). Online publication date: 1-Mar-2010.

    /doi/10.5555/1756006.1953038

  • Pernkopf F and Bilmes J. (2010). Efficient Heuristics for Discriminative Structure Learning of Bayesian Network Classifiers. The Journal of Machine Learning Research. 11. (2323-2360). Online publication date: 1-Mar-2010.

    /doi/10.5555/1756006.1859932

  • Kojima K, Perrier E, Imoto S and Miyano S. (2010). Optimal Search on Clustered Structural Constraint for Learning Bayesian Network Structure. The Journal of Machine Learning Research. 11. (285-310). Online publication date: 1-Mar-2010.

    /doi/10.5555/1756006.1756015

  • Aliferis C, Statnikov A, Tsamardinos I, Mani S and Koutsoukos X. (2010). Local Causal and Markov Blanket Induction for Causal Discovery and Feature Selection for Classification Part II: Analysis and Extensions. The Journal of Machine Learning Research. 11. (235-284). Online publication date: 1-Mar-2010.

    /doi/10.5555/1756006.1756014

  • Aliferis C, Statnikov A, Tsamardinos I, Mani S and Koutsoukos X. (2010). Local Causal and Markov Blanket Induction for Causal Discovery and Feature Selection for Classification Part I: Algorithms and Empirical Evaluation. The Journal of Machine Learning Research. 11. (171-234). Online publication date: 1-Mar-2010.

    /doi/10.5555/1756006.1756013

  • Lin M, Lebedev I and Wawrzynek J. High-throughput bayesian computing machine with reconfigurable hardware. Proceedings of the 18th annual ACM/SIGDA international symposium on Field programmable gate arrays. (73-82).

    https://doi.org/10.1145/1723112.1723127

  • Zhu D and Li H. (2010). Improved Bayesian Network inference using relaxed gene ordering. International Journal of Data Mining and Bioinformatics. 4:1. (44-59). Online publication date: 1-Jan-2010.

    https://doi.org/10.1504/IJDMB.2010.030966

  • Bento J and Montanari A. Which graphical models are difficult to learn?. Proceedings of the 23rd International Conference on Neural Information Processing Systems. (1303-1311).

    /doi/10.5555/2984093.2984240

  • Henao R and Winther O. Bayesian sparse factor models and DAGs inference and comparison. Proceedings of the 23rd International Conference on Neural Information Processing Systems. (736-744).

    /doi/10.5555/2984093.2984176

  • Yehezkel R and Lerner B. (2009). Bayesian Network Structure Learning by Recursive Autonomy Identification. The Journal of Machine Learning Research. 10. (1527-1570). Online publication date: 1-Dec-2009.

    /doi/10.5555/1577069.1755836

  • Roy S, Lane T and Werner-Washburne M. Learning structurally consistent undirected probabilistic graphical models. Proceedings of the 26th Annual International Conference on Machine Learning. (905-912).

    https://doi.org/10.1145/1553374.1553490

  • Koch M, Broom B and Subramanian D. (2009). Learning robust cell signalling models from high throughput proteomic data. International Journal of Bioinformatics Research and Applications. 5:3. (241-253). Online publication date: 1-Jun-2009.

    https://doi.org/10.1504/IJBRA.2009.026417

  • Daly R and Shen Q. (2009). Learning Bayesian network equivalence classes with Ant Colony optimization. Journal of Artificial Intelligence Research. 35:1. (391-447). Online publication date: 1-May-2009.

    /doi/10.5555/1641503.1641512

  • Nam H, Lee K and Lee D. Identification of temporal association rules from time-series microarray data set. Proceedings of the 2nd international workshop on Data and text mining in bioinformatics. (21-28).

    https://doi.org/10.1145/1458449.1458457

  • Shen J, Li L and Wong W. Markov blanket feature selection for support vector machines. Proceedings of the 23rd national conference on Artificial intelligence - Volume 2. (696-701).

    /doi/10.5555/1620163.1620180

  • Xie X and Geng Z. (2008). A Recursive Method for Structural Learning of Directed Acyclic Graphs. The Journal of Machine Learning Research. 9. (459-483). Online publication date: 1-Jun-2008.

    /doi/10.5555/1390681.1390695

  • Zeng Y and Hernandez J. A decomposition algorithm for learning Bayesian network structures from data. Proceedings of the 12th Pacific-Asia conference on Advances in knowledge discovery and data mining. (441-453).

    /doi/10.5555/1786574.1786616

  • Asadi N, Meng T and Wong W. Reconfigurable computing for learning Bayesian networks. Proceedings of the 16th international ACM/SIGDA symposium on Field programmable gate arrays. (203-211).

    https://doi.org/10.1145/1344671.1344702

  • Boscolo R, Liao J and Roychowdhury V. (2008). An Information Theoretic Exploratory Method for Learning Patterns of Conditional Gene Coexpression from Microarray Data. IEEE/ACM Transactions on Computational Biology and Bioinformatics. 5:1. (15-24). Online publication date: 1-Jan-2008.

    https://doi.org/10.1109/TCBB.2007.1056

  • Liu F, Tian F and Zhu Q. A novel ordering-based Greedy Bayesian network learning algorithm on limited data. Proceedings of the 20th Australian joint conference on Advances in artificial intelligence. (80-89).

    /doi/10.5555/1781238.1781250

  • Wang M, Chen Z and Cloutier S. (2007). A hybrid Bayesian network learning method for constructing gene networks. Computational Biology and Chemistry. 31:5-6. (361-372). Online publication date: 1-Oct-2007.

    https://doi.org/10.1016/j.compbiolchem.2007.08.005

  • Nägele A, Dejori M and Stetter M. Bayesian Substructure Learning - Approximate Learning of Very Large Network Structures. Proceedings of the 18th European conference on Machine Learning. (238-249).

    https://doi.org/10.1007/978-3-540-74958-5_24

  • Arnold A, Liu Y and Abe N. Temporal causal modeling with graphical granger methods. Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining. (66-75).

    https://doi.org/10.1145/1281192.1281203

  • Kabli R, Herrmann F and McCall J. A chain-model genetic algorithm for Bayesian network structure learning. Proceedings of the 9th annual conference on Genetic and evolutionary computation. (1264-1271).

    https://doi.org/10.1145/1276958.1277200

  • Zhang J and Feigenbaum J. Finding highly correlated pairs efficiently with powerful pruning. Proceedings of the 15th ACM international conference on Information and knowledge management. (152-161).

    https://doi.org/10.1145/1183614.1183640

  • Hwang K, Kim B and Zhang B. Learning hierarchical bayesian networks for large-scale data analysis. Proceedings of the 13 international conference on Neural Information Processing - Volume Part I. (670-679).

    https://doi.org/10.1007/11893028_75

  • Tsamardinos I, Brown L and Aliferis C. (2006). The max-min hill-climbing Bayesian network structure learning algorithm. Machine Language. 65:1. (31-78). Online publication date: 1-Oct-2006.

    https://doi.org/10.1007/s10994-006-6889-7

  • Goldenberg A and Moore A. Bayes net graphs to understand co-authorship networks?. Proceedings of the 3rd international workshop on Link discovery. (1-8).

    https://doi.org/10.1145/1134271.1134272

  • Thomas J, Ramakrishnan N and Bailey-Kellogg C. Graphical models of residue coupling in protein families. Proceedings of the 5th international workshop on Bioinformatics. (12-20).

    https://doi.org/10.1145/1134030.1134033

  • Davis J, Burnside E, Dutra I, Page D, Ramakrishnan R, Costa V and Shavlik J. View learning for statistical relational learning. Proceedings of the 19th international joint conference on Artificial intelligence. (677-683).

    /doi/10.5555/1642293.1642402

  • Brown L, Tsamardinos I and Aliferis C. A comparison of novel and state-of-the-art polynomial Bayesian network learning algorithms. Proceedings of the 20th national conference on Artificial intelligence - Volume 2. (739-745).

    /doi/10.5555/1619410.1619451

  • Ouerd M, Oommen B and Matwin S. (2004). A formal approach to using data distributions for building causal polytree structures. Information Sciences: an International Journal. 168:1-4. (111-132). Online publication date: 3-Dec-2004.

    https://doi.org/10.1016/j.ins.2004.01.001

  • Ji J, Liu C, Yan J and Zhong N. Bayesian Networks Structure Learning and Its Application to Personalized Recommendation in a B2C Portal. Proceedings of the 2004 IEEE/WIC/ACM International Conference on Web Intelligence. (179-184).

    /doi/10.5555/1025132.1026317

  • Nachman I, Elidan G and Friedman N. "Ideal Parent" structure learning for continuous variable networks. Proceedings of the 20th conference on Uncertainty in artificial intelligence. (400-409).

    /doi/10.5555/1036843.1036892

  • Goldenberg A and Moore A. Tractable learning of large Bayes net structures from sparse data. Proceedings of the twenty-first international conference on Machine learning.

    https://doi.org/10.1145/1015330.1015406

  • Stetter M, Deco G and Dejori M. (2003). Large-Scale Computational Modeling of Genetic Regulatory Networks. Artificial Intelligence Review. 20:1-2. (75-93). Online publication date: 1-Oct-2003.

    https://doi.org/10.1023/A:1026088615145

  • Moore A and Wong W. Optimal reinsertion. Proceedings of the Twentieth International Conference on International Conference on Machine Learning. (552-559).

    /doi/10.5555/3041838.3041908

  • Page D and Ray S. Skewing. Proceedings of the 18th international joint conference on Artificial intelligence. (601-607).

    /doi/10.5555/1630659.1630748

  • Kang J and Naughton J. On schema matching with opaque column names and data values. Proceedings of the 2003 ACM SIGMOD international conference on Management of data. (205-216).

    https://doi.org/10.1145/872757.872783

  • Acid S and de Campos L. (2003). Searching for Bayesian network structures in the space of restricted acyclic partially directed graphs. Journal of Artificial Intelligence Research. 18:1. (445-490). Online publication date: 1-Jan-2003.

    /doi/10.5555/1622420.1622432

  • Davies S and Moore A. Interpolating conditional density trees. Proceedings of the Eighteenth conference on Uncertainty in artificial intelligence. (119-127).

    /doi/10.5555/2073876.2073891

  • Hulten G and Domingos P. Mining complex models from arbitrarily large databases in constant time. Proceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and data mining. (525-531).

    https://doi.org/10.1145/775047.775124

  • Revoredo K and Zaverucha G. Revision of first-order Bayesian classifiers. Proceedings of the 12th international conference on Inductive logic programming. (223-237).

    /doi/10.5555/1765335.1765351

  • Pelleg D and Moore A. Using Tarjan's red rule for fast dependency tree construction. Proceedings of the 16th International Conference on Neural Information Processing Systems. (825-833).

    /doi/10.5555/2968618.2968721

  • Babu S, Garofalakis M and Rastogi R. (2001). SPARTAN. ACM SIGMOD Record. 30:2. (283-294). Online publication date: 1-Jun-2001.

    https://doi.org/10.1145/376284.375693

  • Babu S, Garofalakis M and Rastogi R. SPARTAN. Proceedings of the 2001 ACM SIGMOD international conference on Management of data. (283-294).

    https://doi.org/10.1145/375663.375693

  • Garofalakis M and Rastogi R. (2000). Scalable data mining with model constraints. ACM SIGKDD Explorations Newsletter. 2:2. (39-48). Online publication date: 1-Dec-2000.

    https://doi.org/10.1145/380995.381012

  • Davies S and Moore A. Mix-nets. Proceedings of the Sixteenth conference on Uncertainty in artificial intelligence. (168-175).

    /doi/10.5555/2073946.2073967

  • Bilmes J. Dynamic Bayesian multinets. Proceedings of the Sixteenth conference on Uncertainty in artificial intelligence. (38-45).

    /doi/10.5555/2073946.2073952

  • Friedman N, Linial M, Nachman I and Pe'er D. Using Bayesian networks to analyze expression data. Proceedings of the fourth annual international conference on Computational molecular biology. (127-135).

    https://doi.org/10.1145/332306.332355

  • Boyen X, Friedman N and Koller D. Discovering the hidden structure of complex dynamic systems. Proceedings of the Fifteenth conference on Uncertainty in artificial intelligence. (91-100).

    /doi/10.5555/2073796.2073807