• Duan Z, Tian C and Zhang N. (2014). Normal Form Expressions of Propositional Projection Temporal Logic. Computing and Combinatorics. 10.1007/978-3-319-08783-2_8. (84-93).

    http://link.springer.com/10.1007/978-3-319-08783-2_8

  • Schewe S and Tian C. Synthesising Classic and Interval Temporal Logic. Proceedings of the 2011 Eighteenth International Symposium on Temporal Representation and Reasoning. (64-71).

    https://doi.org/10.1109/TIME.2011.19

  • Saxena P, Akhawe D, Hanna S, Mao F, McCamant S and Song D. A Symbolic Execution Framework for JavaScript. Proceedings of the 2010 IEEE Symposium on Security and Privacy. (513-528).

    https://doi.org/10.1109/SP.2010.38

  • Baran J and Barringer H. Forays into Sequential Composition and Concatenation in Eagle. Runtime Verification. (69-85).

    https://doi.org/10.1007/978-3-540-89247-2_5

  • Zhan N and Wu J. Compositionality of fixpoint logic with chop. Proceedings of the Second international conference on Theoretical Aspects of Computing. (136-150).

    https://doi.org/10.1007/11560647_9

  • Bala S. (2004). Regular Language Matching and Other Decidable Cases of the Satisfiability Problem for Constraints between Regular Open Terms. STACS 2004. 10.1007/978-3-540-24749-4_52. (596-607).

    http://link.springer.com/10.1007/978-3-540-24749-4_52

  • Bauer S, Hodkinson I, Wolter F and Zakharyaschev M. On non-local propositional and local one-variable quantified CTL* Ninth International Symposium on Temporal Representation and Reasoning. 10.1109/TIME.2002.1027466. 0-7695-1474-X. (2-9).

    http://ieeexplore.ieee.org/document/1027466/

  • Knast R. (1985). Propositional calculi of term satisfiability and process logics. Computation Theory. 10.1007/3-540-16066-3_12. (118-126).

    http://link.springer.com/10.1007/3-540-16066-3_12

  • Moszkowski B. (1985). Executing temporal logic programs. Seminar on Concurrency. 10.1007/3-540-15670-4_6. (111-130).

    http://link.springer.com/10.1007/3-540-15670-4_6

  • Halpern J, Manna Z and Moszkowski B. A hardware semantics based on temporal intervals. Automata, Languages and Programming. 10.1007/BFb0036915. (278-291).

    http://www.springerlink.com/index/10.1007/BFb0036915

  • Halpern J. (1982). Deterministic process logic is elementary 23rd Annual Symposium on Foundations of Computer Science. 10.1109/SFCS.1982.16. . (204-216).

    http://ieeexplore.ieee.org/document/4568394/

  • Sherman R, Pnueli A and Harel D. Is the interesting part of process logic uninteresting?. Proceedings of the 9th ACM SIGPLAN-SIGACT symposium on Principles of programming languages. (347-360).

    https://doi.org/10.1145/582153.582189

  • Parikh R. (1981). Propositional dynamic logics of programs: A survey. Logic of Programs. 10.1007/3-540-11160-3_4. (102-144).

    http://link.springer.com/10.1007/3-540-11160-3_4