• Kumar D, Grosz T, Rekabsaz N, Greif E and Schedl M. (2023). Fairness of recommender systems in the recruitment domain: an analysis from technical and legal perspectives. Frontiers in Big Data. 10.3389/fdata.2023.1245198. 6.

    https://www.frontiersin.org/articles/10.3389/fdata.2023.1245198/full

  • Rabaa A, Elbassuoni S, Hanna J, Mouawad A, Olleik A and Amer-Yahia S. (2023). A Framework to Maximize Group Fairness for Workers on Online Labor Platforms. Data Science and Engineering. 10.1007/s41019-023-00213-y. 8:2. (146-176). Online publication date: 1-Jun-2023.

    https://link.springer.com/10.1007/s41019-023-00213-y

  • Takan S, Ergün D and Katipoğlu G. (2023). Gamified Text Testing for Sustainable Fairness. Sustainability. 10.3390/su15032292. 15:3. (2292).

    https://www.mdpi.com/2071-1050/15/3/2292

  • Xia F, Guo T, Bai X, Shatte A, Liu Z and Tang J. (2022). SUMMER: Bias-aware Prediction of Graduate Employment Based on Educational Big Data. ACM/IMS Transactions on Data Science. 2:4. (1-24). Online publication date: 30-Nov-2021.

    https://doi.org/10.1145/3510361