• Cheng C, Wang J, Wu Z, Zhou J, Wang J and Chen C. (2025). Pre-compensated annealing gradient descent for spherical holography. Optics Communications. 10.1016/j.optcom.2024.131049. 574. (131049). Online publication date: 1-Jan-2025.

    https://linkinghub.elsevier.com/retrieve/pii/S0030401824007867

  • Chan D, O’Toole M, Ma S and Wang J. (2025). Holodepth: Programmable Depth-Varying Projection via Computer-Generated Holography. Computer Vision – ECCV 2024. 10.1007/978-3-031-73030-6_13. (229-246).

    https://link.springer.com/10.1007/978-3-031-73030-6_13

  • Chao B, Gopakumar M, Choi S, Kim J, Shi L and Wetzstein G. Large Étendue 3D Holographic Display with Content-adaptive Dynamic Fourier Modulation. SIGGRAPH Asia 2024 Conference Papers. (1-12).

    https://doi.org/10.1145/3680528.3687600

  • Higashida R, Miura M, Nobukawa T, Yamaguchi Y, Aoshima K, Funabashi N and Yamaguchi M. (2024). High-étendue multilevel surface-relief computer-generated hologram printing. Optics Express. 10.1364/OE.542238. 32:25. (44742). Online publication date: 2-Dec-2024.

    https://opg.optica.org/abstract.cfm?URI=oe-32-25-44742

  • Gopakumar M, Lee G, Choi S, Chao B, Peng Y, Kim J and Wetzstein G. (2024). Full-colour 3D holographic augmented-reality displays with metasurface waveguides. Nature. 10.1038/s41586-024-07386-0. 629:8013. (791-797). Online publication date: 23-May-2024.

    https://www.nature.com/articles/s41586-024-07386-0

  • Wang Z, Pang Y, Liang L, Feng Q, Lv G, Wang A and Ming H. (2024). Holographic near-eye display with improved image quality and depth cue based on pupil optimization. Optics and Lasers in Engineering. 10.1016/j.optlaseng.2024.108098. 176. (108098). Online publication date: 1-May-2024.

    https://linkinghub.elsevier.com/retrieve/pii/S0143816624000782

  • Tseng E, Kuo G, Baek S, Matsuda N, Maimone A, Schiffers F, Chakravarthula P, Fu Q, Heidrich W, Lanman D and Heide F. (2024). Neural étendue expander for ultra-wide-angle high-fidelity holographic display. Nature Communications. 10.1038/s41467-024-46915-3. 15:1.

    https://www.nature.com/articles/s41467-024-46915-3

  • Shi L, Ryu D and Matusik W. (2024). Ergonomic‐Centric Holography: Optimizing Realism, Immersion, and Comfort for Holographic Display. Laser & Photonics Reviews. 10.1002/lpor.202300651. 18:4. Online publication date: 1-Apr-2024.

    https://onlinelibrary.wiley.com/doi/10.1002/lpor.202300651

  • Liu T, Ning H, Cao H, Luo D, Xu Z, Luo C, Su G, Liu Y, Yao R and Peng J. (2023). Research Progress of Large Viewing‐Area 3D Holographic Near‐Eye Display. Laser & Photonics Reviews. 10.1002/lpor.202300641. 18:4. Online publication date: 1-Apr-2024.

    https://onlinelibrary.wiley.com/doi/10.1002/lpor.202300641

  • Jang C, Bang K, Chae M, Lee B and Lanman D. (2024). Waveguide holography for 3D augmented reality glasses. Nature Communications. 10.1038/s41467-023-44032-1. 15:1.

    https://www.nature.com/articles/s41467-023-44032-1

  • Zheng C, Zhao G and So P. Close the Design-to-Manufacturing Gap in Computational Optics with a 'Real2Sim' Learned Two-Photon Neural Lithography Simulator. SIGGRAPH Asia 2023 Conference Papers. (1-9).

    https://doi.org/10.1145/3610548.3618251

  • Markley E, Matsuda N, Schiffers F, Cossairt O and Kuo G. Simultaneous Color Computer Generated Holography. SIGGRAPH Asia 2023 Conference Papers. (1-11).

    https://doi.org/10.1145/3610548.3618250

  • Nam S, Kim Y, Kim D and Jeong Y. (2023). Depolarized Holography with Polarization-Multiplexing Metasurface. ACM Transactions on Graphics. 42:6. (1-16). Online publication date: 5-Dec-2023.

    https://doi.org/10.1145/3618395

  • Kuo G, Schiffers F, Lanman D, Cossairt O and Matsuda N. (2023). Multisource Holography. ACM Transactions on Graphics. 42:6. (1-14). Online publication date: 5-Dec-2023.

    https://doi.org/10.1145/3618380

  • Chae M, Chen C, Lee E, Jeong Y and Lee B. (2023). Investigation on étendue expansion property of the lenslet array with converging axes 2023 IEEE Photonics Conference (IPC). 10.1109/IPC57732.2023.10360480. 979-8-3503-4722-7. (1-2).

    https://ieeexplore.ieee.org/document/10360480/

  • Wang Z, Lv G, Pang Y, Feng Q, Wang A and Ming H. (2023). Lens array-based holographic 3D display with an expanded field of view and eyebox. Optics Letters. 10.1364/OL.505181. 48:21. (5559). Online publication date: 1-Nov-2023.

    https://opg.optica.org/abstract.cfm?URI=ol-48-21-5559

  • Ersaro N, Yalcin C, Murray L, Kabuli L, Waller L and Muller R. (2023). Fast non-iterative algorithm for 3D point-cloud holography. Optics Express. 10.1364/OE.498302. 31:22. (36468). Online publication date: 23-Oct-2023.

    https://opg.optica.org/abstract.cfm?URI=oe-31-22-36468

  • Wang J, Wang J, Zhou J, Zhang Y and Wu Y. (2023). Crosstalk-free for multi-plane holographic display using double-constraint stochastic gradient descent. Optics Express. 10.1364/OE.499595. 31:19. (31142). Online publication date: 11-Sep-2023.

    https://opg.optica.org/abstract.cfm?URI=oe-31-19-31142

  • Xia X, Wang W, Guan F, Yang F, Shui X, Zheng H, Yu Y and Peng Y. (2023). Exploring angular-steering illumination-based eyebox expansion for holographic displays. Optics Express. 10.1364/OE.498938. 31:19. (31563). Online publication date: 11-Sep-2023.

    https://opg.optica.org/abstract.cfm?URI=oe-31-19-31563

  • Chae M, Bang K, Yoo D and Jeong Y. (2023). Étendue Expansion in Holographic Near Eye Displays through Sparse Eye-box Generation Using Lens Array Eyepiece. ACM Transactions on Graphics. 42:4. (1-13). Online publication date: 1-Aug-2023.

    https://doi.org/10.1145/3592441

  • Schiffers F, Chakravarthula P, Matsuda N, Kuo G, Tseng E, Lanman D, Heide F and Cossairt O. (2023). Stochastic Light Field Holography 2023 IEEE International Conference on Computational Photography (ICCP). 10.1109/ICCP56744.2023.10233716. 979-8-3503-1676-6. (1-12).

    https://ieeexplore.ieee.org/document/10233716/

  • Yu H, Kim Y, Yang D, Seo W, Kim Y, Hong J, Song H, Sung G, Sung Y, Min S and Lee H. (2023). Deep learning-based incoherent holographic camera enabling acquisition of real-world holograms for holographic streaming system. Nature Communications. 10.1038/s41467-023-39329-0. 14:1.

    https://www.nature.com/articles/s41467-023-39329-0

  • Yu P, Liu Y, Wang Z, Liang J, Liu X, Li Y, Qiu C and Gong L. (2023). Ultrahigh-density 3D holographic projection by scattering-assisted dynamic holography. Optica. 10.1364/OPTICA.483057. 10:4. (481). Online publication date: 20-Apr-2023.

    https://opg.optica.org/abstract.cfm?URI=optica-10-4-481

  • Monin S, Sankaranarayanan A, Levin A, Lee S and Blanche P. (2023). Analysis of phase masks for wide étendue holographic displays Practical Holography XXXVII: Displays, Materials, and Applications. 10.1117/12.2649218. 9781510659957. (28).

    https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12445/2649218/Analysis-of-phase-masks-for-wide-%c3%a9tendue-holographic-displays/10.1117/12.2649218.full

  • Akşit K and Itoh Y. (2023). HoloBeam: Paper-Thin Near-Eye Displays 2023 IEEE Conference Virtual Reality and 3D User Interfaces (VR). 10.1109/VR55154.2023.00073. 979-8-3503-4815-6. (581-591).

    https://ieeexplore.ieee.org/document/10108432/

  • Kavaklı K, Itoh Y, Urey H and Akşit K. (2023). Realistic Defocus Blur for Multiplane Computer-Generated Holography 2023 IEEE Conference Virtual Reality and 3D User Interfaces (VR). 10.1109/VR55154.2023.00057. 979-8-3503-4815-6. (418-426).

    https://ieeexplore.ieee.org/document/10108460/

  • Pang Y, Yumeng S, Chen T, Wang Z, Guoqiang L, Feng Q, Zhou C, Cao L, Poon T and Yoshikawa H. (2022). Color holographic HUD with eyebox expansion using a folding optical path module Holography, Diffractive Optics, and Applications XII. 10.1117/12.2643511. 9781510657021. (85).

    https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12318/2643511/Color-holographic-HUD-with-eyebox-expansion-using-a-folding-optical/10.1117/12.2643511.full

  • Chakravarthula P, Baek S, Schiffers F, Tseng E, Kuo G, Maimone A, Matsuda N, Cossairt O, Lanman D and Heide F. (2022). Pupil-Aware Holography. ACM Transactions on Graphics. 41:6. (1-15). Online publication date: 1-Dec-2022.

    https://doi.org/10.1145/3550454.3555508

  • Chakravarthula P, Tseng E, Fuchs H and Heide F. (2022). Hogel-Free Holography. ACM Transactions on Graphics. 41:5. (1-16). Online publication date: 31-Oct-2022.

    https://doi.org/10.1145/3516428

  • Wang Z, Tu K, Pang Y, Lv G, Feng Q, Wang A and Ming H. (2022). Enlarging the FOV of lensless holographic retinal projection display with two-step Fresnel diffraction. Applied Physics Letters. 10.1063/5.0094110. 121:8. Online publication date: 22-Aug-2022.

    https://pubs.aip.org/apl/article/121/8/081103/2834042/Enlarging-the-FOV-of-lensless-holographic-retinal

  • Shi L, Li B and Matusik W. (2022). End-to-end learning of 3D phase-only holograms for holographic display. Light: Science & Applications. 10.1038/s41377-022-00894-6. 11:1.

    https://www.nature.com/articles/s41377-022-00894-6

  • Monin S, Sankaranarayanan A and Levin A. (2022). Analyzing phase masks for wide étendue holographic displays 2022 IEEE International Conference on Computational Photography (ICCP). 10.1109/ICCP54855.2022.9887757. 978-1-6654-5851-1. (1-12).

    https://ieeexplore.ieee.org/document/9887757/

  • Monin S, Sankaranarayanan A and Levin A. (2022). Exponentially-wide etendue displays using a tilting cascade 2022 IEEE International Conference on Computational Photography (ICCP). 10.1109/ICCP54855.2022.9887737. 978-1-6654-5851-1. (1-12).

    https://ieeexplore.ieee.org/document/9887737/

  • Itoh Y, Langlotz T, Sutton J and Plopski A. (2021). Towards Indistinguishable Augmented Reality. ACM Computing Surveys. 54:6. (1-36). Online publication date: 31-Jul-2022.

    https://doi.org/10.1145/3453157

  • Kim D, Nam S, Lee B, Seo J and Lee B. (2022). Accommodative holography. ACM Transactions on Graphics. 41:4. (1-15). Online publication date: 1-Jul-2022.

    https://doi.org/10.1145/3528223.3530147

  • Choi S, Peng Y, Gopakumar M, Kim J and Wetzstein G. (2022). 37‐2: Invited Paper: Enabling Augmented‐Reality Near‐Eye and Head‐Up Displays with Neural Holography . SID Symposium Digest of Technical Papers. 10.1002/sdtp.15521. 53:1. (458-461). Online publication date: 1-Jun-2022.

    https://sid.onlinelibrary.wiley.com/doi/10.1002/sdtp.15521

  • Yin K, Hsiang E, Zou J, Li Y, Yang Z, Yang Q, Lai P, Lin C and Wu S. (2022). Advanced liquid crystal devices for augmented reality and virtual reality displays: principles and applications. Light: Science & Applications. 10.1038/s41377-022-00851-3. 11:1.

    https://www.nature.com/articles/s41377-022-00851-3

  • Ye B, Fujimoto Y, Uchimine Y, Sawabe T, Kanbara M and Kato H. (2022). Cross-talk elimination for lenslet array near eye display based on eye-gaze tracking. Optics Express. 10.1364/OE.455482. 30:10. (16196). Online publication date: 9-May-2022.

    https://opg.optica.org/abstract.cfm?URI=oe-30-10-16196

  • Lee D, Bang K, Nam S, Lee B, Kim D and Lee B. (2022). Expanding energy envelope in holographic display via mutually coherent multi-directional illumination. Scientific Reports. 10.1038/s41598-022-10355-0. 12:1.

    https://www.nature.com/articles/s41598-022-10355-0

  • Kim D, Nam S, Lee B, Lee B, Yatagai T, Koike Y and Miyata S. (2022). Wide field of view holographic tiled display through axially overlapped holographic projection Ultra-High-Definition Imaging Systems V. 10.1117/12.2615759. 9781510649217. (27).

    https://www.spiedigitallibrary.org/conference-proceedings-of-spie/12025/2615759/Wide-field-of-view-holographic-tiled-display-through-axially-overlapped/10.1117/12.2615759.full

  • Lee B, Kim D, Lee S, Chen C and Lee B. (2022). High-contrast, speckle-free, true 3D holography via binary CGH optimization. Scientific Reports. 10.1038/s41598-022-06405-2. 12:1.

    https://www.nature.com/articles/s41598-022-06405-2

  • Jang H, Lee J, Baek G, Kwak J and Park J. (2022). Progress in the development of the display performance of AR, VR, QLED and OLED devices in recent years. Journal of Information Display. 10.1080/15980316.2022.2035835. 23:1. (1-17). Online publication date: 2-Jan-2022.

    https://www.tandfonline.com/doi/full/10.1080/15980316.2022.2035835

  • Demolder A. Toward the Standardization of High-Quality Computer-Generated Holography Media Production Workflow. SMPTE Motion Imaging Journal. 10.5594/JMI.2021.3130941. 131:1. (48-58).

    https://ieeexplore.ieee.org/document/9691494/

  • Park J and Lee B. (2022). Holographic techniques for augmented reality and virtual reality near-eye displays. Light: Advanced Manufacturing. 10.37188/lam.2022.009. 3:1. (1).

    https://www.light-am.com/article/doi/10.37188/lam.2022.009

  • Chae M, Yoo D, Lee S and Lee B. (2022). Etendue-Expanded Holographic Display Using Lens Array 4-f System Digital Holography and Three-Dimensional Imaging. 10.1364/DH.2022.Th2A.9. 978-1-957171-12-8. (Th2A.9).

    https://opg.optica.org/abstract.cfm?URI=DH-2022-Th2A.9

  • Chang K and Seder T. (2022). Automotive Augmented Reality: User Experience and Enabling Technology. Information Display. 10.1002/msid.1272. 38:1. (12-18). Online publication date: 1-Jan-2022.

    https://sid.onlinelibrary.wiley.com/doi/10.1002/msid.1272

  • Choi S, Gopakumar M, Peng Y, Kim J and Wetzstein G. (2021). Neural 3D holography. ACM Transactions on Graphics. 40:6. (1-12). Online publication date: 1-Dec-2021.

    https://doi.org/10.1145/3478513.3480542

  • Orlosky J, Sra M, Bektaş K, Peng H, Kim J, Kos’myna N, Höllerer T, Steed A, Kiyokawa K and Akşit K. (2021). Telelife: The Future of Remote Living. Frontiers in Virtual Reality. 10.3389/frvir.2021.763340. 2.

    https://www.frontiersin.org/articles/10.3389/frvir.2021.763340/full

  • Chen C, Lee B, Li N, Chae M, Wang D, Wang Q and Lee B. (2021). Multi-depth hologram generation using stochastic gradient descent algorithm with complex loss function. Optics Express. 10.1364/OE.425077. 29:10. (15089). Online publication date: 10-May-2021.

    https://opg.optica.org/abstract.cfm?URI=oe-29-10-15089

  • Wilm T, Hofmann J, Fiess R, Höckh S, Stork W, Fimia A, Hrabovský M and Sheridan J. (2021). Immersion-based holographic wave front printer setup for volume holographic retinal projection elements Holography: Advances and Modern Trends VII. 10.1117/12.2589102. 9781510643826. (12).

    https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11774/2589102/Immersion-based-holographic-wave-front-printer-setup-for-volume-holographic/10.1117/12.2589102.full

  • Itoh Y, Kaminokado T and Aksit K. Beaming Displays. IEEE Transactions on Visualization and Computer Graphics. 10.1109/TVCG.2021.3067764. 27:5. (2659-2668).

    https://ieeexplore.ieee.org/document/9383112/

  • Sun X, Zhang Y, Huang P, Acharjee N, Dagenais M, Peckerar M and Varshney A. (2021). Proximity Effect Correction for Fresnel Holograms on Nanophotonic Phased Arrays 2021 IEEE Virtual Reality and 3D User Interfaces (VR). 10.1109/VR50410.2021.00058. 978-1-6654-1838-6. (353-362).

    https://ieeexplore.ieee.org/document/9417643/

  • Choi S, Kim J, Peng Y and Wetzstein G. (2021). Optimizing image quality for holographic near-eye displays with Michelson Holography. Optica. 10.1364/OPTICA.410622. 8:2. (143). Online publication date: 20-Feb-2021.

    https://opg.optica.org/abstract.cfm?URI=optica-8-2-143