• Su C, Hou P, Liu F and Yi X. (2024). A Review of Knowledge Graph-based Research Methods for Fault Diagnosis of Special Vehicles 2024 6th International Conference on System Reliability and Safety Engineering (SRSE). 10.1109/SRSE63568.2024.10772553. 979-8-3503-5608-3. (272-281).

    https://ieeexplore.ieee.org/document/10772553/

  • He W, Xiao Y, Li T, Wang R and Li Q. Interest HD: An Interest Frame Model for Recommendation Based on HD Image Generation. IEEE Transactions on Neural Networks and Learning Systems. 10.1109/TNNLS.2023.3278673. 35:10. (14356-14369).

    https://ieeexplore.ieee.org/document/10143372/

  • Yılmazer H and Özel S. (2024). Diverse but Relevant Recommendations with Continuous Ant Colony Optimization. Mathematics. 10.3390/math12162497. 12:16. (2497).

    https://www.mdpi.com/2227-7390/12/16/2497

  • Han W and Qi F. Co-training GRN based on Daul Attributed Random Walk for Node Classification. Proceedings of the International Conference on Machine Learning, Pattern Recognition and Automation Engineering. (105-110).

    https://doi.org/10.1145/3696687.3696706

  • Wen J, Liu H, Jing L and Yu J. (2024). Learning-based counterfactual explanations for recommendation. Science China Information Sciences. 10.1007/s11432-023-3974-2. 67:8. Online publication date: 1-Aug-2024.

    https://link.springer.com/10.1007/s11432-023-3974-2

  • Li H, Wei W, Liu G, Liu J, Jiang F and Du J. Intent Distribution based Bipartite Graph Representation Learning. Proceedings of the 47th International ACM SIGIR Conference on Research and Development in Information Retrieval. (1649-1658).

    https://doi.org/10.1145/3626772.3657739

  • Gao W, Ma H, Zhao Y, Wang J and Tian Q. (2024). Enhancing personalized exercise recommendation with student and exercise portraits. Journal of Electronic Science and Technology. 10.1016/j.jnlest.2024.100262. 22:2. (100262). Online publication date: 1-Jun-2024.

    https://linkinghub.elsevier.com/retrieve/pii/S1674862X24000302

  • Wang B, Chen J, Li C, Zhou S, Shi Q, Gao Y, Feng Y, Chen C and Wang C. Distributionally Robust Graph-based Recommendation System. Proceedings of the ACM Web Conference 2024. (3777-3788).

    https://doi.org/10.1145/3589334.3645598

  • Fragkathoulas C, Papanikou V, Karidi D and Pitoura E. (2024). On Explaining Unfairness: An Overview 2024 IEEE 40th International Conference on Data Engineering Workshops (ICDEW). 10.1109/ICDEW61823.2024.00035. 979-8-3503-8403-1. (226-236).

    https://ieeexplore.ieee.org/document/10555067/

  • Attolou H, Tzompanaki K, Stefanidis K and Kotzinos D. (2024). Why-Not Explainable Graph Recommender 2024 IEEE 40th International Conference on Data Engineering (ICDE). 10.1109/ICDE60146.2024.00178. 979-8-3503-1715-2. (2245-2257).

    https://ieeexplore.ieee.org/document/10597965/

  • Xiong Z, Li H, Liu Z, Chen Z, Zhou H, Rong W and Ouyang Y. (2024). A Review of Data Mining in Personalized Education: Current Trends and Future Prospects. Frontiers of Digital Education. 10.1007/s44366-024-0019-6. 1:1. (26-50). Online publication date: 1-Mar-2024.

    https://link.springer.com/10.1007/s44366-024-0019-6

  • Xiao C, Lv S, Fan W and Ip W. (2023). Temporal-order association-based dynamic graph evolution for recommendation. The Journal of Supercomputing. 10.1007/s11227-023-05645-x. 80:4. (5197-5223). Online publication date: 1-Mar-2024.

    https://link.springer.com/10.1007/s11227-023-05645-x

  • Xia L, Huang C, Xu Y, Dai P and Bo L. Multi-Behavior Graph Neural Networks for Recommender System. IEEE Transactions on Neural Networks and Learning Systems. 10.1109/TNNLS.2022.3204775. (1-15).

    https://ieeexplore.ieee.org/document/9925059/

  • George G and Lal A. (2024). PERKC: Personalized kNN With CPT for Course Recommendations in Higher Education. IEEE Transactions on Learning Technologies. 17. (885-892). Online publication date: 1-Jan-2024.

    https://doi.org/10.1109/TLT.2023.3346645

  • Ma B, Yang T and Ren B. (2024). A Survey on Explainable Course Recommendation Systems. Distributed, Ambient and Pervasive Interactions. 10.1007/978-3-031-60012-8_17. (273-287).

    https://link.springer.com/10.1007/978-3-031-60012-8_17

  • Mu R, Zeng X and Zhang J. Heterogeneous information fusion based graph collaborative filtering recommendation. Intelligent Data Analysis. 10.3233/IDA-227025. 27:6. (1595-1613).

    https://www.medra.org/servlet/aliasResolver?alias=iospress&doi=10.3233/IDA-227025

  • Yilmazer H and Özel S. (2022). ImposeSVD: Incrementing PureSVD For Top-N Recommendations for Cold-Start Problems and Sparse Datasets. The Computer Journal. 10.1093/comjnl/bxac106. 66:11. (2595-2622). Online publication date: 14-Nov-2023.

    https://academic.oup.com/comjnl/article/66/11/2595/6653218

  • Liu Z, Fang Y and Wu M. Dual-View Preference Learning for Adaptive Recommendation. IEEE Transactions on Knowledge and Data Engineering. 10.1109/TKDE.2023.3236370. 35:11. (11316-11327).

    https://ieeexplore.ieee.org/document/10015846/

  • Zhang L, Liu P and Gulla J. (2023). Recommending on graphs: a comprehensive review from a data perspective. User Modeling and User-Adapted Interaction. 10.1007/s11257-023-09359-w. 33:4. (803-888). Online publication date: 1-Sep-2023.

    https://link.springer.com/10.1007/s11257-023-09359-w

  • Guo L, Luan K, Sun L, Luo Y and Zheng X. (2023). Collaborative filtering recommendations based on multi-factor random walks. Engineering Applications of Artificial Intelligence. 10.1016/j.engappai.2023.106409. 123. (106409). Online publication date: 1-Aug-2023.

    https://linkinghub.elsevier.com/retrieve/pii/S0952197623005936

  • Sun M and Wang A. (2023). Privacy preserving cold-start recommendation for out-of-matrix users via content baskets. International Journal of Data Science and Analytics. 10.1007/s41060-023-00388-7. 16:2. (237-253). Online publication date: 1-Aug-2023.

    https://link.springer.com/10.1007/s41060-023-00388-7

  • Wu M, Ni Q and Wu J. (2023). Relation-Aware Graph Attention Network for Multi-Behavior Recommendation 2023 International Joint Conference on Neural Networks (IJCNN). 10.1109/IJCNN54540.2023.10191140. 978-1-6654-8867-9. (1-8).

    https://ieeexplore.ieee.org/document/10191140/

  • Dash A, Chakraborty A, Ghosh S, Mukherjee A and Gummadi K. FaiRIR: Mitigating Exposure Bias From Related Item Recommendations in Two-Sided Platforms. IEEE Transactions on Computational Social Systems. 10.1109/TCSS.2022.3164655. 10:3. (1301-1313).

    https://ieeexplore.ieee.org/document/9763433/

  • Alhijawi B, Awajan A and Fraihat S. (2022). Survey on the Objectives of Recommender Systems: Measures, Solutions, Evaluation Methodology, and New Perspectives. ACM Computing Surveys. 55:5. (1-38). Online publication date: 31-May-2023.

    https://doi.org/10.1145/3527449

  • Zhang X, Wang Z and Du B. (2022). Graph-aware collaborative reasoning for click-through rate prediction. World Wide Web. 10.1007/s11280-022-01050-1. 26:3. (967-987). Online publication date: 1-May-2023.

    https://link.springer.com/10.1007/s11280-022-01050-1

  • Zhao W, Lin Z, Feng Z, Wang P and Wen J. (2022). A Revisiting Study of Appropriate Offline Evaluation for Top-N Recommendation Algorithms. ACM Transactions on Information Systems. 41:2. (1-41). Online publication date: 30-Apr-2023.

    https://doi.org/10.1145/3545796

  • Gao W, Ma H, Zhao Y, Wang J and Tian Q. (2023). Modeling Portraits of Students and Exercises for Exercise Recommendation. Advanced Intelligent Computing Technology and Applications. 10.1007/978-981-99-4752-2_19. (226-236).

    https://link.springer.com/10.1007/978-981-99-4752-2_19

  • Zhang Y, Yu M, Sun J, Zhang T and Yu G. (2023). MG-CR: Factor Memory Network and Graph Neural Network Based Personalized Course Recommendation. Database Systems for Advanced Applications. 10.1007/978-3-031-30672-3_37. (547-562).

    https://link.springer.com/10.1007/978-3-031-30672-3_37

  • Zhou Y and Hayes C. (2023). Graph-Based Diffusion Method for Top-N Recommendation. Artificial Intelligence and Cognitive Science. 10.1007/978-3-031-26438-2_23. (292-304).

    https://link.springer.com/10.1007/978-3-031-26438-2_23

  • Li S, Chen R, Sun C, Yao H, Cheng X, Li Z, Li T and Kang X. (2022). Region-aware neural graph collaborative filtering for personalized recommendation. International Journal of Digital Earth. 10.1080/17538947.2022.2113463. 15:1. (1446-1462). Online publication date: 31-Dec-2022.

    https://www.tandfonline.com/doi/full/10.1080/17538947.2022.2113463

  • Muto K, Oyama S and Noda I. (2022). Explainable Recommendation Using Knowledge Graphs and Random Walks 2022 IEEE International Conference on Big Data (Big Data). 10.1109/BigData55660.2022.10021120. 978-1-6654-8045-1. (4028-4023).

    https://ieeexplore.ieee.org/document/10021120/

  • Marras M, Boratto L, Ramos G and Fenu G. (2021). Equality of Learning Opportunity via Individual Fairness in Personalized Recommendations. International Journal of Artificial Intelligence in Education. 10.1007/s40593-021-00271-1. 32:3. (636-684). Online publication date: 1-Sep-2022.

    https://link.springer.com/10.1007/s40593-021-00271-1

  • Schmitt M and Spinosa E. (2022). Scalable stream-based recommendations with random walks on incremental graph of sequential interactions with implicit feedback. User Modeling and User-Adapted Interaction. 10.1007/s11257-021-09315-6. 32:4. (543-573). Online publication date: 1-Sep-2022.

    https://link.springer.com/10.1007/s11257-021-09315-6

  • He J, Xiao P, Chen C, Zhu Z, Zhang J and Deng L. (2022). GCNCMI: A Graph Convolutional Neural Network Approach for Predicting circRNA-miRNA Interactions. Frontiers in Genetics. 10.3389/fgene.2022.959701. 13.

    https://www.frontiersin.org/articles/10.3389/fgene.2022.959701/full

  • Li S, Sun C, Chen R, Li X, Liang Q, Gong J and Yao H. (2022). Location-aware neural graph collaborative filtering. International Journal of Geographical Information Science. 10.1080/13658816.2022.2073594. 36:8. (1550-1574). Online publication date: 3-Aug-2022.

    https://www.tandfonline.com/doi/full/10.1080/13658816.2022.2073594

  • Yin S and Ma W. (2022). Attribute Inference Based on User Similarity and Random Walk 2022 IEEE International Conference on Services Computing (SCC). 10.1109/SCC55611.2022.00040. 978-1-6654-8146-5. (215-220).

    https://ieeexplore.ieee.org/document/9860235/

  • Zhu G, Chen Y and Wang S. (2022). Graph-Community-Enabled Personalized Course-Job Recommendations with Cross-Domain Data Integration. Sustainability. 10.3390/su14127439. 14:12. (7439).

    https://www.mdpi.com/2071-1050/14/12/7439

  • Song Y, Ye H, Li M and Cao F. (2022). Deep multi-graph neural networks with attention fusion for recommendation. Expert Systems with Applications: An International Journal. 191:C. Online publication date: 1-Apr-2022.

    https://doi.org/10.1016/j.eswa.2021.116240

  • Liu Y, Ma H, Jiang Y and Li Z. (2022). Modelling risk and return awareness for p2p lending recommendation with graph convolutional networks. Applied Intelligence. 52:5. (4999-5014). Online publication date: 1-Mar-2022.

    https://doi.org/10.1007/s10489-021-02680-0

  • Zhang M, Wang G, Ren L, Li J, Deng K and Zhang B. (2022). METoNR. Knowledge-Based Systems. 238:C. Online publication date: 28-Feb-2022.

    https://doi.org/10.1016/j.knosys.2021.107922

  • Sun Z, Fang H, Yang J, Qu X, Liu H, Yu D, Ong Y and Zhang J. DaisyRec 2.0: Benchmarking Recommendation for Rigorous Evaluation. IEEE Transactions on Pattern Analysis and Machine Intelligence. 10.1109/TPAMI.2022.3231891. (1-20).

    https://ieeexplore.ieee.org/document/9999032/

  • Xia F, Wang L, Tang T, Chen X, Kong X, Oatley G and King I. CenGCN: Centralized Convolutional Networks with Vertex Imbalance for Scale-Free Graphs. IEEE Transactions on Knowledge and Data Engineering. 10.1109/TKDE.2022.3149888. (1-1).

    https://ieeexplore.ieee.org/document/9709096/

  • da Silva B and Antunes C. (2022). Recommendation for Higher Education Candidates: A Case Study on Engineering Programs. Advanced Data Mining and Applications. 10.1007/978-3-030-95405-5_11. (144-155).

    https://link.springer.com/10.1007/978-3-030-95405-5_11

  • Nikolakopoulos A, Ning X, Desrosiers C and Karypis G. (2022). Trust Your Neighbors: A Comprehensive Survey of Neighborhood-Based Methods for Recommender Systems. Recommender Systems Handbook. 10.1007/978-1-0716-2197-4_2. (39-89).

    https://link.springer.com/10.1007/978-1-0716-2197-4_2

  • Hu X and Liu Y. (2021). Predicting lncRNA-disease associations with network based message passing 2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). 10.1109/BIBM52615.2021.9669369. 978-1-6654-0126-5. (2217-2222).

    https://ieeexplore.ieee.org/document/9669369/

  • Ma B, Lu M, Taniguchi Y and Konomi S. (2021). CourseQ: the impact of visual and interactive course recommendation in university environments. Research and Practice in Technology Enhanced Learning. 10.1186/s41039-021-00167-7. 16:1. Online publication date: 1-Dec-2021.

    https://telrp.springeropen.com/articles/10.1186/s41039-021-00167-7

  • Frost S and McCalla G. (2020). A Planning Algorithm to Support Learning in Open-ended, Unstructured Environments. International Journal of Artificial Intelligence in Education. 10.1007/s40593-020-00221-3. 31:4. (847-877). Online publication date: 1-Dec-2021.

    https://link.springer.com/10.1007/s40593-020-00221-3

  • Dai Y, Yoshikawa M and Sugiyama K. (2022). Prerequisite-aware course ordering towards getting relevant job opportunities. Expert Systems with Applications: An International Journal. 183:C. Online publication date: 30-Nov-2021.

    https://doi.org/10.1016/j.eswa.2021.115233

  • Chen H, Li Y and Yang H. Graph Data Mining in Recommender Systems. Web Information Systems Engineering – WISE 2021. (491-496).

    https://doi.org/10.1007/978-3-030-91560-5_36

  • Hu D and Ma H. (2021). Collaborator recommendation integrating author’s cooperation strength and research interests on attributed graph. Advances in Computational Intelligence. 10.1007/s43674-021-00002-y. 1:4. Online publication date: 1-Oct-2021.

    https://link.springer.com/10.1007/s43674-021-00002-y

  • Liu Y, Ma H, Jiang Y and Li Z. (2022). Learning to recommend via random walk with profile of loan and lender in P2P lending. Expert Systems with Applications: An International Journal. 174:C. Online publication date: 15-Jul-2021.

    https://doi.org/10.1016/j.eswa.2021.114763

  • Ghazimatin A, Pramanik S, Saha Roy R and Weikum G. ELIXIR: Learning from User Feedback on Explanations to Improve Recommender Models. Proceedings of the Web Conference 2021. (3850-3860).

    https://doi.org/10.1145/3442381.3449848

  • Guruge D, Kadel R and Halder S. (2021). The State of the Art in Methodologies of Course Recommender Systems—A Review of Recent Research. Data. 10.3390/data6020018. 6:2. (18).

    https://www.mdpi.com/2306-5729/6/2/18

  • Ouyang S and Lawlor A. Improving Explainable Recommendations by Deep Review-Based Explanations. IEEE Access. 10.1109/ACCESS.2021.3076146. 9. (67444-67455).

    https://ieeexplore.ieee.org/document/9417205/

  • Suzuki T, Oyama S and Kurihara M. (2020). A Framework for Recommendation Algorithms Using Knowledge Graph and Random Walk Methods 2020 IEEE International Conference on Big Data (Big Data). 10.1109/BigData50022.2020.9378103. 978-1-7281-6251-5. (3085-3087).

    https://ieeexplore.ieee.org/document/9378103/

  • Li X, Zhang M, Wu S, Liu Z, Wang L and Yu P. (2020). Dynamic Graph Collaborative Filtering 2020 IEEE International Conference on Data Mining (ICDM). 10.1109/ICDM50108.2020.00041. 978-1-7281-8316-9. (322-331).

    https://ieeexplore.ieee.org/document/9338436/

  • Chen J, Cao B, Liu J and Li B. (2020). MR-UI: A Mobile Application Recommendation Based on User Interaction 2020 IEEE International Conference on Web Services (ICWS). 10.1109/ICWS49710.2020.00025. 978-1-7281-8786-0. (134-141).

    https://ieeexplore.ieee.org/document/9284090/

  • Pardos Z, Nam A and Chen P. (2020). A university map of course knowledge. PLOS ONE. 10.1371/journal.pone.0233207. 15:9. (e0233207).

    https://dx.plos.org/10.1371/journal.pone.0233207

  • Mirvakhabova L, Frolov E, Khrulkov V, Oseledets I and Tuzhilin A. Performance of Hyperbolic Geometry Models on Top-N Recommendation Tasks. Proceedings of the 14th ACM Conference on Recommender Systems. (527-532).

    https://doi.org/10.1145/3383313.3412219

  • Xia L, Huang C, Xu Y, Dai P, Zhang B and Bo L. Multiplex Behavioral Relation Learning for Recommendation via Memory Augmented Transformer Network. Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval. (2397-2406).

    https://doi.org/10.1145/3397271.3401445

  • Li Z, Shen X, Jiao Y, Pan X, Zou P, Meng X, Yao C and Bu J. (2020). Hierarchical Bipartite Graph Neural Networks: Towards Large-Scale E-commerce Applications 2020 IEEE 36th International Conference on Data Engineering (ICDE). 10.1109/ICDE48307.2020.00149. 978-1-7281-2903-7. (1677-1688).

    https://ieeexplore.ieee.org/document/9101846/

  • Wang X, He X and Chua T. Learning and Reasoning on Graph for Recommendation. Proceedings of the 13th International Conference on Web Search and Data Mining. (890-893).

    https://doi.org/10.1145/3336191.3371873

  • Ghazimatin A, Balalau O, Saha Roy R and Weikum G. PRINCE. Proceedings of the 13th International Conference on Web Search and Data Mining. (196-204).

    https://doi.org/10.1145/3336191.3371824

  • Liu Y, Ma H, Jiang Y and Li Z. (2020). Top-N Recommendation in P2P Lending: A Hybrid Graph Ranking Using Investor Profile. Neural Information Processing. 10.1007/978-3-030-63833-7_59. (700-712).

    http://link.springer.com/10.1007/978-3-030-63833-7_59

  • Nikolakopoulos A, Berberidis D, Karypis G and Giannakis G. Personalized diffusions for top-n recommendation. Proceedings of the 13th ACM Conference on Recommender Systems. (260-268).

    https://doi.org/10.1145/3298689.3346985

  • Huang X, Song Q, Li Y and Hu X. Graph Recurrent Networks With Attributed Random Walks. Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. (732-740).

    https://doi.org/10.1145/3292500.3330941