• Qiu M, Yang W, Wei F and Chen M. (2024). A Topic Modeling Based on Prompt Learning. Electronics. 10.3390/electronics13163212. 13:16. (3212).

    https://www.mdpi.com/2079-9292/13/16/3212

  • Razaq A, Halim Z, Ur Rahman A and Sikandar K. (2024). Identification of paraphrased text in research articles through improved embeddings and fine-tuned BERT model. Multimedia Tools and Applications. 10.1007/s11042-024-18359-w. 83:30. (74205-74232).

    https://link.springer.com/10.1007/s11042-024-18359-w

  • Lee J and Ostwald M. (2024). Latent Dirichlet Allocation (LDA) topic models for Space Syntax studies on spatial experience. City, Territory and Architecture. 10.1186/s40410-023-00223-3. 11:1.

    https://cityterritoryarchitecture.springeropen.com/articles/10.1186/s40410-023-00223-3

  • Koltcov S, Surkov A, Filippov V and Ignatenko V. (2024). Topic models with elements of neural networks: investigation of stability, coherence, and determining the optimal number of topics. PeerJ Computer Science. 10.7717/peerj-cs.1758. 10. (e1758).

    https://peerj.com/articles/cs-1758

  • Yin Q, Zhong L, Song Y, Bai L, Wang Z, Li C, Xu Y and Yang X. (2023). A decision support system in precision medicine: contrastive multimodal learning for patient stratification. Annals of Operations Research. 10.1007/s10479-023-05545-6.

    https://link.springer.com/10.1007/s10479-023-05545-6

  • Zhang P, Liu B, Lu T, Gu H, Ding X and Gu N. (2022). A Semantic Embedding Enhanced Topic Model For User-Generated Textual Content Modeling In Social Ecosystems. The Computer Journal. 10.1093/comjnl/bxac091. 65:11. (2953-2968). Online publication date: 11-Nov-2022.

    https://academic.oup.com/comjnl/article/65/11/2953/6741145

  • Chauhan U and Shah A. (2021). Topic Modeling Using Latent Dirichlet allocation. ACM Computing Surveys. 54:7. (1-35). Online publication date: 30-Sep-2022.

    https://doi.org/10.1145/3462478

  • Meng Y, Zhang Y, Huang J, Zhang Y and Han J. Topic Discovery via Latent Space Clustering of Pretrained Language Model Representations. Proceedings of the ACM Web Conference 2022. (3143-3152).

    https://doi.org/10.1145/3485447.3512034

  • Murakami R and Chakraborty B. (2022). Investigating the Efficient Use of Word Embedding with Neural-Topic Models for Interpretable Topics from Short Texts. Sensors. 10.3390/s22030852. 22:3. (852).

    https://www.mdpi.com/1424-8220/22/3/852

  • Zhang F, Gao W, Fang Y and Zhang B. (2020). Enhancing Short Text Topic Modeling with FastText Embeddings 2020 International Conference on Big Data, Artificial Intelligence and Internet of Things Engineering (ICBAIE). 10.1109/ICBAIE49996.2020.00060. 978-1-7281-6499-1. (255-259).

    https://ieeexplore.ieee.org/document/9196423/

  • Hadi K, Lasri R and El Abderrahmani A. (2019). Social Media Reputation and Political Popularity: Study of a Moroccan Case 2019 International Conference on Intelligent Systems and Advanced Computing Sciences (ISACS). 10.1109/ISACS48493.2019.9068920. 978-1-7281-4813-7. (1-4).

    https://ieeexplore.ieee.org/document/9068920/

  • Yang P, Li W and Zhao G. Language Model-Driven Topic Clustering and Summarization for News Articles. IEEE Access. 10.1109/ACCESS.2019.2960538. 7. (185506-185519).

    https://ieeexplore.ieee.org/document/8936376/