• Raj A, Chauhan M, Chhoker V, Rani M, Singh B, D’Souza R and Bodwal J. (2024). Brute forcing on secured shell servers emphasising the role of cyber forensics – a quali-quantitative study. Medico-Legal Journal. 10.1177/00258172241236269. 92:3. (152-157). Online publication date: 1-Sep-2024.

    https://journals.sagepub.com/doi/10.1177/00258172241236269

  • Graf J, Chuprikov P, Eugster P and Jahnke P. (2024). FARM: Comprehensive Data Center Network Monitoring and Management 2024 IEEE 44th International Conference on Distributed Computing Systems (ICDCS). 10.1109/ICDCS60910.2024.00055. 979-8-3503-8605-9. (520-530).

    https://ieeexplore.ieee.org/document/10630999/

  • Bello Suleiman M, Robinson R and Ubale Kiru M. (2024). Long-Short Term Memory Network Based Model for Reverse Brute Force Attack Detection. International Journal of Innovative Science and Research Technology (IJISRT). 10.38124/ijisrt/IJISRT24JUL160. (450-461).

    https://www.ijisrt.com/longshort-term-memory-network-based-model-for-reverse-brute-force-attack-detection

  • Sun H, Huang Q, Lee P, Bai W, Zhu F and Bao Y. Distributed Network Telemetry With Resource Efficiency and Full Accuracy. IEEE/ACM Transactions on Networking. 10.1109/TNET.2023.3327345. 32:3. (1857-1872).

    https://ieeexplore.ieee.org/document/10384692/

  • Shou C, Bhatia R, Gupta A, Harrison R, Lokshtanov D and Willinger W. (2024). Query Planning for Robust and Scalable Hybrid Network Telemetry Systems. Proceedings of the ACM on Networking. 2:CoNEXT1. (1-27). Online publication date: 28-Mar-2024.

    https://doi.org/10.1145/3649471

  • Lyu M, Habibi Gharakheili H and Sivaraman V. A Survey on Enterprise Network Security: Asset Behavioral Monitoring and Distributed Attack Detection. IEEE Access. 10.1109/ACCESS.2024.3419068. 12. (89363-89383).

    https://ieeexplore.ieee.org/document/10571950/

  • Sun Z, Sun Y, Du Y, Liu J and Huang H. (2024). Persistent Sketch: A Memory-Efficient and Robust Algorithm for Finding Top-k Persistent Flows. Algorithms and Architectures for Parallel Processing. 10.1007/978-981-97-0811-6_2. (19-38).

    https://link.springer.com/10.1007/978-981-97-0811-6_2

  • Liu Y, Zhou L, Liu Q, Lan T, Bai X and Zhou T. (2023). Semi-supervised Few-shot Network Intrusion Detection based on Meta-learning 2023 IEEE International Conferences on Internet of Things (iThings) and IEEE Green Computing & Communications (GreenCom) and IEEE Cyber, Physical & Social Computing (CPSCom) and IEEE Smart Data (SmartData) and IEEE Congress on Cybermatics (Cybermatics). 10.1109/iThings-GreenCom-CPSCom-SmartData-Cybermatics60724.2023.00097. 979-8-3503-0946-1. (495-502).

    https://ieeexplore.ieee.org/document/10501823/

  • Sun H, Li J, He J, Gui J and Huang Q. OmniWindow: A General and Efficient Window Mechanism Framework for Network Telemetry. Proceedings of the ACM SIGCOMM 2023 Conference. (867-880).

    https://doi.org/10.1145/3603269.3604847

  • Tiwari N and Hubballi N. Secure Socket Shell Bruteforce Attack Detection With Petri Net Modeling. IEEE Transactions on Network and Service Management. 10.1109/TNSM.2022.3212591. 20:1. (697-710).

    https://ieeexplore.ieee.org/document/9913204/

  • Lee H, Mudgerikar A, Li N and Bertino E. (2022). Intrusion Detection Systems for IoT. IoT for Defense and National Security. 10.1002/9781119892199.ch13. (237-258). Online publication date: 28-Dec-2022.

    https://onlinelibrary.wiley.com/doi/10.1002/9781119892199.ch13

  • Kumar R, Arora N, Gera T, Jain A and Thakur D. (2022). Empirical Methods, Anomaly Detection and Preventive Measures of Web Attacks 2022 10th International Conference on Reliability, Infocom Technologies and Optimization (Trends and Future Directions) (ICRITO). 10.1109/ICRITO56286.2022.9964908. 978-1-6654-7433-7. (1-5).

    https://ieeexplore.ieee.org/document/9964908/

  • Lee H, Mudgerikar A, Kundu A, Li N and Bertino E. An Infection-Identifying and Self-Evolving System for IoT Early Defense from Multi-Step Attacks. Computer Security – ESORICS 2022. (549-568).

    https://doi.org/10.1007/978-3-031-17146-8_27

  • Shamsi Z, Zhang D, Kyoung D and Liu A. (2022). Measuring and Clustering Network Attackers using Medium-Interaction Honeypots 2022 IEEE European Symposium on Security and Privacy Workshops (EuroS&PW). 10.1109/EuroSPW55150.2022.00036. 978-1-6654-9560-8. (294-306).

    https://ieeexplore.ieee.org/document/9799380/

  • Schwenk J. (2022). Secure Shell (SSH). Guide to Internet Cryptography. 10.1007/978-3-031-19439-9_13. (329-339).

    https://link.springer.com/10.1007/978-3-031-19439-9_13

  • Panda S, Feng Y, Kulkarni S, Ramakrishnan K, Duffield N and Bhuyan L. SmartWatch. Proceedings of the 17th International Conference on emerging Networking EXperiments and Technologies. (60-75).

    https://doi.org/10.1145/3485983.3494861

  • Agghey A, Mwinuka L, Pandhare S, Dida M and Ndibwile J. (2021). Detection of Username Enumeration Attack on SSH Protocol: Machine Learning Approach. Symmetry. 10.3390/sym13112192. 13:11. (2192).

    https://www.mdpi.com/2073-8994/13/11/2192

  • Khandait P, Tiwari N and Hubballi N. Who is Trying to Compromise Your SSH Server ? An Analysis of Authentication Logs and Detection of Bruteforce Attacks. Adjunct Proceedings of the 2021 International Conference on Distributed Computing and Networking. (127-132).

    https://doi.org/10.1145/3427477.3429772

  • Sadasivam G, Hota C and Bhojan A. (2021). Detection of stealthy single-source SSH password guessing attacks. Evolving Systems. 10.1007/s12530-020-09360-3.

    http://link.springer.com/10.1007/s12530-020-09360-3

  • Wilkens F and Fischer M. (2020). Towards Data-Driven Characterization of Brute-Force Attackers 2020 IEEE Conference on Communications and Network Security (CNS). 10.1109/CNS48642.2020.9162326. 978-1-7281-4760-4. (1-9).

    https://ieeexplore.ieee.org/document/9162326/

  • Hossain M, Ochiai H, Doudou F and Kadobayashi Y. (2020). SSH and FTP brute-force Attacks Detection in Computer Networks: LSTM and Machine Learning Approaches 2020 5th International Conference on Computer and Communication Systems (ICCCS). 10.1109/ICCCS49078.2020.9118459. 978-1-7281-6136-5. (491-497).

    https://ieeexplore.ieee.org/document/9118459/

  • Arzani B, Ciraci S, Saroiu S, Wolman A, Stokes J, Outhred G and Diwu L. PrivateEye. Proceedings of the 17th Usenix Conference on Networked Systems Design and Implementation. (797-816).

    /doi/10.5555/3388242.3388300

  • Febro A, Xiao H and Spring J. (2019). SIPchain: SIP Defense Cluster With Blockchain 2019 Principles, Systems and Applications of IP Telecommunications (IPTComm). 10.1109/IPTCOMM.2019.8920874. 978-1-7281-4201-2. (1-8).

    https://ieeexplore.ieee.org/document/8920874/

  • Haque A, Ayyar A and Singh S. (2018). A meta data mining framework for botnet analysis. International Journal of Computers and Applications. 10.1080/1206212X.2018.1442136. 41:5. (392-399). Online publication date: 3-Sep-2019.

    https://www.tandfonline.com/doi/full/10.1080/1206212X.2018.1442136

  • Ring M, Wunderlich S, Scheuring D, Landes D and Hotho A. (2019). A survey of network-based intrusion detection data sets. Computers and Security. 86:C. (147-167). Online publication date: 1-Sep-2019.

    https://doi.org/10.1016/j.cose.2019.06.005

  • Cao P, Wu Y, Banerjee S, Azoff J, Withers A, Kalbarczyk Z and Iyer R. CAUDIT. Proceedings of the 16th USENIX Conference on Networked Systems Design and Implementation. (667-682).

    /doi/10.5555/3323234.3323288

  • Gupta A, Harrison R, Canini M, Feamster N, Rexford J and Willinger W. Sonata. Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication. (357-371).

    https://doi.org/10.1145/3230543.3230555

  • Kuzuno H and Otsuka S. (2018). Early Detection of Network Incident Using Open Security Information 2018 32nd International Conference on Advanced Information Networking and Applications Workshops (WAINA). 10.1109/WAINA.2018.00057. 978-1-5386-5395-1. (18-23).

    https://ieeexplore.ieee.org/document/8418042/

  • Shirali-Shahreza S and Ganjali Y. Protecting Home User Devices with an SDN-Based Firewall. IEEE Transactions on Consumer Electronics. 10.1109/TCE.2018.2811261. 64:1. (92-100).

    http://ieeexplore.ieee.org/document/8307429/

  • Sadasivam G, Hota C and Anand B. (2018). Honeynet Data Analysis and Distributed SSH Brute-Force Attacks. Towards Extensible and Adaptable Methods in Computing. 10.1007/978-981-13-2348-5_9. (107-118).

    http://link.springer.com/10.1007/978-981-13-2348-5_9

  • Hofstede R, Jonker M, Sperotto A and Pras A. (2017). Flow-Based Web Application Brute-Force Attack and Compromise Detection. Journal of Network and Systems Management. 25:4. (735-758). Online publication date: 1-Oct-2017.

    https://doi.org/10.1007/s10922-017-9421-4

  • Ghiette V, Blenn N and Doerr C. (2016). Remote Identification of Port Scan Toolchains 2016 8th IFIP International Conference on New Technologies, Mobility and Security (NTMS). 10.1109/NTMS.2016.7792471. 978-1-5090-2914-3. (1-5).

    http://ieeexplore.ieee.org/document/7792471/

  • Doerr C, el Maouchi M, Kamoen S and Moree J. (2016). Scan prediction and reconnaissance mitigation through commodity graphics cards 2016 IEEE Conference on Communications and Network Security (CNS). 10.1109/CNS.2016.7860496. 978-1-5090-3065-1. (287-295).

    http://ieeexplore.ieee.org/document/7860496/

  • Sadasivam G, Hota C and Anand B. (2016). Classification of SSH Attacks Using Machine Learning Algorithms 2016 6th International Conference on IT Convergence and Security (ICITCS). 10.1109/ICITCS.2016.7740316. 978-1-5090-3765-0. (1-6).

    http://ieeexplore.ieee.org/document/7740316/

  • Cao P, Badger E, Kalbarczyk Z and Iyer R. A framework for generation, replay, and analysis of real-world attack variants. Proceedings of the Symposium and Bootcamp on the Science of Security. (28-37).

    https://doi.org/10.1145/2898375.2898392

  • Abdou A, Barrera D and van Oorschot P. (2016). What Lies Beneath? Analyzing Automated SSH Bruteforce Attacks. Technology and Practice of Passwords. 10.1007/978-3-319-29938-9_6. (72-91).

    http://link.springer.com/10.1007/978-3-319-29938-9_6

  • Najafabadi M, Khoshgoftaar T, Calvert C and Kemp C. (2015). Detection of SSH Brute Force Attacks Using Aggregated Netflow Data 2015 IEEE 14th International Conference on Machine Learning and Applications (ICMLA). 10.1109/ICMLA.2015.20. 978-1-5090-0287-0. (283-288).

    http://ieeexplore.ieee.org/document/7424322/

  • Miao R, Potharaju R, Yu M and Jain N. The Dark Menace. Proceedings of the 2015 Internet Measurement Conference. (169-182).

    https://doi.org/10.1145/2815675.2815707

  • SATOH A, NAKAMURA Y and IKENAGA T. (2015). A New Approach to Identify User Authentication Methods toward SSH Dictionary Attack Detection. IEICE Transactions on Information and Systems. 10.1587/transinf.2014ICP0005. E98.D:4. (760-768).

    https://www.jstage.jst.go.jp/article/transinf/E98.D/4/E98.D_2014ICP0005/_article

  • Bartos V and Zadnik M. (2014). An analysis of correlations of intrusion alerts in an NREN 2014 IEEE 19th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD). 10.1109/CAMAD.2014.7033255. 978-1-4799-5725-5. (305-309).

    http://ieeexplore.ieee.org/document/7033255/

  • Najafabadi M, Khoshgoftaar T, Kemp C, Seliya N and Zuech R. Machine Learning for Detecting Brute Force Attacks at the Network Level. Proceedings of the 2014 IEEE International Conference on Bioinformatics and Bioengineering. (379-385).

    https://doi.org/10.1109/BIBE.2014.73

  • Hofstede R, Hendriks L, Sperotto A and Pras A. (2014). SSH Compromise Detection using NetFlow/IPFIX. ACM SIGCOMM Computer Communication Review. 44:5. (20-26). Online publication date: 10-Oct-2014.

    https://doi.org/10.1145/2677046.2677050

  • Abt S and Baier H. Are We Missing Labels? A Study of the Availability of Ground-Truth in Network Security Research. Proceedings of the 2014 Third International Workshop on Building Analysis Datasets and Gathering Experience Returns for Security. (40-55).

    https://doi.org/10.1109/BADGERS.2014.11

  • Durumeric Z, Bailey M and Halderman J. An internet-wide view of internet-wide scanning. Proceedings of the 23rd USENIX conference on Security Symposium. (65-78).

    /doi/10.5555/2671225.2671230