• Akram A, Farhan A, Basharat A and Borzì L. (2023). Less is more: Efficient behavioral context recognition using Dissimilarity-Based Query Strategy. PLOS ONE. 10.1371/journal.pone.0286919. 18:6. (e0286919).

    https://dx.plos.org/10.1371/journal.pone.0286919

  • Adaimi R and Thomaz E. (2019). Leveraging Active Learning and Conditional Mutual Information to Minimize Data Annotation in Human Activity Recognition. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies. 3:3. (1-23). Online publication date: 9-Sep-2019.

    https://doi.org/10.1145/3351228

  • Ao B, Wang Y, Liu H, Li D, Song L and Li J. (2018). Context Impacts in Accelerometer-Based Walk Detection and Step Counting. Sensors. 10.3390/s18113604. 18:11. (3604).

    https://www.mdpi.com/1424-8220/18/11/3604

  • Satizábal H and Perez-Uribe A. (2014). Unsupervised template discovery in activity recognition using the Gamma Growing Neural Gas algorithm. Soft Computing. 10.1007/s00500-014-1499-y. 19:9. (2435-2445). Online publication date: 1-Sep-2015.

    http://link.springer.com/10.1007/s00500-014-1499-y

  • (2015). Bibliography. Activity Learning. 10.1002/9781119010258.biblio. (237-251). Online publication date: 23-Feb-2015.

    https://onlinelibrary.wiley.com/doi/10.1002/9781119010258.biblio

  • Miu T, Plötz T, Missier P and Roggen D. On strategies for budget-based online annotation in human activity recognition. Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing: Adjunct Publication. (767-776).

    https://doi.org/10.1145/2638728.2641300