• Schmidt D, Tagliaro C, Borgolte K and Lindorfer M. IoTFlow: Inferring IoT Device Behavior at Scale through Static Mobile Companion App Analysis. Proceedings of the 2023 ACM SIGSAC Conference on Computer and Communications Security. (681-695).

    https://doi.org/10.1145/3576915.3623211

  • Bourdoucen A, Nurgalieva L and Lindqvist J. (2023). Privacy Is the Price: Player Views and Technical Evaluation of Data Practices in Online Games. Proceedings of the ACM on Human-Computer Interaction. 7:CHI PLAY. (1136-1178). Online publication date: 29-Sep-2023.

    https://doi.org/10.1145/3611064

  • Ullah I, Boreli R and Kanhere S. (2022). Privacy in targeted advertising on mobile devices: a survey. International Journal of Information Security. 10.1007/s10207-022-00655-x. 22:3. (647-678). Online publication date: 1-Jun-2023.

    https://link.springer.com/10.1007/s10207-022-00655-x

  • Liu H, Leith D and Patras P. Android OS Privacy Under the Loupe -- A Tale from the East. Proceedings of the 16th ACM Conference on Security and Privacy in Wireless and Mobile Networks. (31-42).

    https://doi.org/10.1145/3558482.3581775

  • Mahmud U and Hussain S. (2022). Measuring Energy Consumption of Insertion Sort to Establish Energy Consumption Dependency on Execution Time and Memory Allocation 2022 International Conference on Future Trends in Smart Communities (ICFTSC). 10.1109/ICFTSC57269.2022.10039867. 979-8-3503-3454-8. (247-250).

    https://ieeexplore.ieee.org/document/10039867/

  • Zhan X, Liu T, Fan L, Li L, Chen S, Luo X and Liu Y. Research on Third-Party Libraries in Android Apps: A Taxonomy and Systematic Literature Review. IEEE Transactions on Software Engineering. 10.1109/TSE.2021.3114381. 48:10. (4181-4213).

    https://ieeexplore.ieee.org/document/9542854/

  • Mahmud U, Hussain S, Toure I and Souri A. (2022). Gathering Contextual Data with Power Information Using Smartphones in Internet of Everything. Wireless Communications & Mobile Computing. 2022. Online publication date: 1-Jan-2022.

    https://doi.org/10.1155/2022/4445751

  • Ahasanuzzaman M, Hassan S and Hassan A. Studying Ad Library Integration Strategies of Top Free-to-Download Apps. IEEE Transactions on Software Engineering. 10.1109/TSE.2020.2983399. 48:1. (209-224).

    https://ieeexplore.ieee.org/document/9052472/

  • Ullah I and Binbusayyis A. Joint Optimization of Privacy and Cost of in-App Mobile User Profiling and Targeted Ads. IEEE Access. 10.1109/ACCESS.2022.3166152. 10. (38664-38683).

    https://ieeexplore.ieee.org/document/9754555/

  • Gonzalez R, Soriente C, Carrascosa J, Garcia-Duran A, Iordanou C and Niepert M. User profiling by network observers. Proceedings of the 17th International Conference on emerging Networking EXperiments and Technologies. (212-222).

    https://doi.org/10.1145/3485983.3494859

  • Roy S, Kesharwani A and Gupta A. (2021). Demystifying User’s Attachment of Smartphone Apps: A Value Orientation Perspective. Journal of Internet Commerce. 10.1080/15332861.2021.1979301. (1-29).

    https://www.tandfonline.com/doi/full/10.1080/15332861.2021.1979301

  • Adikari S and Dutta K. (2020). Adaptive Ad Network Selection for Publisher‐Return Optimization in Mobile‐App Advertising. Decision Sciences. 10.1111/deci.12500. 52:4. (986-1017). Online publication date: 1-Aug-2021.

    https://onlinelibrary.wiley.com/doi/10.1111/deci.12500

  • Su S, Wang H and Xu G. (2021). Towards Understanding iOS App Store Search Advertising: An Explorative Study 2021 IEEE/ACM 8th International Conference on Mobile Software Engineering and Systems (MobileSoft). 10.1109/MobileSoft52590.2021.00011. 978-1-7281-8711-2. (40-51).

    https://ieeexplore.ieee.org/document/9460943/

  • Silva J, Carvalho P and Lima S. (2020). Characterisation of Unsolicited Traffic Advertisements in Mobile Devices 2020 International Conference on Software, Telecommunications and Computer Networks (SoftCOM). 10.23919/SoftCOM50211.2020.9238206. 978-953-290-099-6. (1-6).

    https://ieeexplore.ieee.org/document/9238206/

  • Arrate A, González-Cabañas J, Cuevas Á and Cuevas R. (2020). Malvertising in Facebook: Analysis, Quantification and Solution. Electronics. 10.3390/electronics9081332. 9:8. (1332).

    https://www.mdpi.com/2079-9292/9/8/1332

  • Din Z, Tigas P, King S and Livshits B. PERCIVAL. Proceedings of the 2020 USENIX Conference on Usenix Annual Technical Conference. (387-400).

    /doi/10.5555/3489146.3489172

  • Zhang X, Wang X, Slavin R, Breaux T and Niu J. How does misconfiguration of analytic services compromise mobile privacy?. Proceedings of the ACM/IEEE 42nd International Conference on Software Engineering. (1572-1583).

    https://doi.org/10.1145/3377811.3380401

  • Heitmann N, Pirker B, Park S and Chakraborty S. Towards Building Better Mobile Web Browsers for Ad Blocking. The 21st ACM SIGPLAN/SIGBED Conference on Languages, Compilers, and Tools for Embedded Systems. (146-150).

    https://doi.org/10.1145/3372799.3394372

  • Zungur O, Stringhini G and Egele M. (2020). Libspector : Context-Aware Large-Scale Network Traffic Analysis of Android Applications 2020 50th Annual IEEE/IFIP International Conference on Dependable Systems and Networks (DSN). 10.1109/DSN48063.2020.00048. 978-1-7281-5809-9. (318-330).

    https://ieeexplore.ieee.org/document/9153400/

  • Liu Y, Song T and Liao L. (2019). TPII: tracking personally identifiable information via user behaviors in HTTP traffic. Frontiers of Computer Science. 10.1007/s11704-018-7451-z. 14:3. Online publication date: 1-Jun-2020.

    http://link.springer.com/10.1007/s11704-018-7451-z

  • Jiang J, Zheng Y, Shi Z, Yuan X, Gui X and Wang C. A Practical System for Privacy-Aware Targeted Mobile Advertising Services. IEEE Transactions on Services Computing. 10.1109/TSC.2017.2697385. 13:3. (410-424).

    https://ieeexplore.ieee.org/document/7909009/

  • Gamba J, Rashed M, Razaghpanah A, Tapiador J and Vallina-Rodriguez N. (2020). An Analysis of Pre-installed Android Software 2020 IEEE Symposium on Security and Privacy (SP). 10.1109/SP40000.2020.00013. 978-1-7281-3497-0. (1039-1055).

    https://ieeexplore.ieee.org/document/9152633/

  • Osia S, Shahin Shamsabadi A, Sajadmanesh S, Taheri A, Katevas K, Rabiee H, Lane N and Haddadi H. A Hybrid Deep Learning Architecture for Privacy-Preserving Mobile Analytics. IEEE Internet of Things Journal. 10.1109/JIOT.2020.2967734. 7:5. (4505-4518).

    https://ieeexplore.ieee.org/document/8962332/

  • Xu F, Tu Z and Li Y. Connecting the Dots: User Privacy is not Preserved in ID-Removed Cellular Data. IEEE Transactions on Network and Service Management. 10.1109/TNSM.2019.2926488. 17:1. (147-159).

    https://ieeexplore.ieee.org/document/8755280/

  • Cook J, Nithyanand R and Shafiq Z. (2020). Inferring Tracker-Advertiser Relationships in the Online Advertising Ecosystem using Header Bidding. Proceedings on Privacy Enhancing Technologies. 10.2478/popets-2020-0005. 2020:1. (65-82). Online publication date: 1-Jan-2020.. Online publication date: 1-Jan-2020.

    https://petsymposium.org/popets/2020/popets-2020-0005.php

  • Osia S, Taheri A, Shamsabadi A, Katevas K, Haddadi H and Rabiee H. Deep Private-Feature Extraction. IEEE Transactions on Knowledge and Data Engineering. 10.1109/TKDE.2018.2878698. 32:1. (54-66).

    https://ieeexplore.ieee.org/document/8515092/

  • Ullah I, Boreli R, Kanhere S, Chawla S, Ahanger T and Tariq U. Protecting Private Attributes in App Based Mobile User Profiling. IEEE Access. 10.1109/ACCESS.2020.3014424. 8. (143818-143836).

    https://ieeexplore.ieee.org/document/9159571/

  • Wang Z, Li Z, Xue M and Tyson G. (2020). Exploring the Eastern Frontier: A First Look at Mobile App Tracking in China. Passive and Active Measurement. 10.1007/978-3-030-44081-7_19. (314-328).

    http://link.springer.com/10.1007/978-3-030-44081-7_19

  • Bashir M, Arshad S, Kirda E, Robertson W and Wilson C. A Longitudinal Analysis of the ads.txt Standard. Proceedings of the Internet Measurement Conference. (294-307).

    https://doi.org/10.1145/3355369.3355603

  • Li Y, Wang Y and Lan T. Mobile Ad Prefetching and Energy Optimization via Tail Energy Accounting. IEEE Transactions on Mobile Computing. 10.1109/TMC.2018.2873596. 18:9. (2117-2128).

    https://ieeexplore.ieee.org/document/8481546/

  • Mhaidli A, Zou Y and Schaub F. "We can't live without them!" app developers' adoption of ad networks and their considerations of consumer risks. Proceedings of the Fifteenth USENIX Conference on Usable Privacy and Security. (225-244).

    /doi/10.5555/3361476.3361493

  • Zhao W, Lu R, Cui Z and Shen H. (2019). Energy Optimization of Online Tracker for Mobile Devices 2019 IEEE 23rd International Conference on Computer Supported Cooperative Work in Design (CSCWD). 10.1109/CSCWD.2019.8791851. 978-1-7281-0350-1. (428-433).

    https://ieeexplore.ieee.org/document/8791851/

  • Govindan K, A K, Ppallan J, Jaiswal S and Subramaniam K. (2019). TCP Closure Optimization for Enhanced Battery Life in Smart Devices. IEEE Transactions on Mobile Computing. 18:3. (645-657). Online publication date: 1-Mar-2019.

    https://doi.org/10.1109/TMC.2018.2842793

  • Lee S, Go M, Ha R and Cha H. (2019). Provisioning of energy consumption information for mobile ads. Pervasive and Mobile Computing. 10.1016/j.pmcj.2019.01.002. 53. (49-61). Online publication date: 1-Feb-2019.

    https://linkinghub.elsevier.com/retrieve/pii/S1574119218300816

  • Gupta R and Pal S. (2019). Click-Through Rate Estimation Using CHAID Classification Tree Model. Advances in Analytics and Applications. 10.1007/978-981-13-1208-3_5. (45-58).

    http://link.springer.com/10.1007/978-981-13-1208-3_5

  • Bashir M, Arshad S, Kirda E, Robertson W and Wilson C. How Tracking Companies Circumvented Ad Blockers Using WebSockets. Proceedings of the Internet Measurement Conference 2018. (471-477).

    https://doi.org/10.1145/3278532.3278573

  • Iordanou C, Smaragdakis G, Poese I and Laoutaris N. Tracing Cross Border Web Tracking. Proceedings of the Internet Measurement Conference 2018. (329-342).

    https://doi.org/10.1145/3278532.3278561

  • Wang H, Liu Z, Liang J, Vallina-Rodriguez N, Guo Y, Li L, Tapiador J, Cao J and Xu G. Beyond Google Play. Proceedings of the Internet Measurement Conference 2018. (293-307).

    https://doi.org/10.1145/3278532.3278558

  • Kolamunna H, Leontiadis I, Perino D, Seneviratne S, Thilakarathna K and Seneviratne A. A First Look at SIM-Enabled Wearables in the Wild. Proceedings of the Internet Measurement Conference 2018. (77-83).

    https://doi.org/10.1145/3278532.3278540

  • Shuba A, Markopoulou A and Shafiq Z. (2018). NoMoAds: Effective and Efficient Cross-App Mobile Ad-Blocking. Proceedings on Privacy Enhancing Technologies. 10.1515/popets-2018-0035. 2018:4. (125-140). Online publication date: 1-Oct-2018.. Online publication date: 1-Oct-2018.

    https://petsymposium.org/popets/2018/popets-2018-0035.php

  • Bashir M and Wilson C. (2018). Diffusion of User Tracking Data in the Online Advertising Ecosystem. Proceedings on Privacy Enhancing Technologies. 10.1515/popets-2018-0033. 2018:4. (85-103). Online publication date: 1-Oct-2018.. Online publication date: 1-Oct-2018.

    https://petsymposium.org/popets/2018/popets-2018-0033.php

  • Pan E, Ren J, Lindorfer M, Wilson C and Choffnes D. (2018). Panoptispy: Characterizing Audio and Video Exfiltration from Android Applications. Proceedings on Privacy Enhancing Technologies. 10.1515/popets-2018-0030. 2018:4. (33-50). Online publication date: 1-Oct-2018.. Online publication date: 1-Oct-2018.

    https://www.sciendo.com/article/10.1515/popets-2018-0030

  • Gao C, Zeng J, Sarro F, Lyu M and King I. Exploring the effects of ad schemes on the performance cost of mobile phones. Proceedings of the 1st International Workshop on Advances in Mobile App Analysis. (13-18).

    https://doi.org/10.1145/3243218.3243221

  • Corner M and Levine B. MicroMobile. Proceedings of the 16th Annual International Conference on Mobile Systems, Applications, and Services. (310-322).

    https://doi.org/10.1145/3210240.3210326

  • Osia S, Shamsabadi A, Taheri A, Rabiee H and Haddadi H. Private and Scalable Personal Data Analytics Using Hybrid Edge-to-Cloud Deep Learning. Computer. 10.1109/MC.2018.2381113. 51:5. (42-49).

    https://ieeexplore.ieee.org/document/8364651/

  • Tan H, Zhao W and Shen H. (2018). A Context-Perceptual Privacy Protection Approach on Android Devices 2018 IEEE International Conference on Communications (ICC 2018). 10.1109/ICC.2018.8422188. 978-1-5386-3180-5. (1-7).

    https://ieeexplore.ieee.org/document/8422188/

  • Papadopoulos P, Kourtellis N and Markatos E. The Cost of Digital Advertisement. Proceedings of the 2018 World Wide Web Conference. (1479-1489).

    https://doi.org/10.1145/3178876.3186060

  • Constantin F, Harris C, Ieong S, Mehta A and Tan X. Optimizing Ad Refresh In Mobile App Advertising. Proceedings of the 2018 World Wide Web Conference. (1399-1408).

    https://doi.org/10.1145/3178876.3186045

  • Michclinakis F, Doroud H, Razaghpanah A, Lutu A, Vallina-Rodriguez N, Gill P and Widmer J. (2018). The Cloud that Runs the Mobile Internet: A Measurement Study of Mobile Cloud Services IEEE INFOCOM 2018 - IEEE Conference on Computer Communications. 10.1109/INFOCOM.2018.8485872. 978-1-5386-4128-6. (1619-1627).

    https://ieeexplore.ieee.org/document/8485872/

  • Furner C, Racherla P, Babb J and Zinko R. Mobile Application Stickiness. Optimizing Current Practices in E-Services and Mobile Applications. 10.4018/978-1-5225-5026-6.ch006. (114-138).

    http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-5225-5026-6.ch006

  • Almeida M, Finamore A, Perino D, Vallina-Rodriguez N and Varvello M. Dissecting DNS Stakeholders in Mobile Networks. Proceedings of the 13th International Conference on emerging Networking EXperiments and Technologies. (28-34).

    https://doi.org/10.1145/3143361.3143375

  • Henze M, Pennekamp J, Hellmanns D, Mühmer E, Ziegeldorf J, Drichel A and Wehrle K. CloudAnalyzer. Proceedings of the 14th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services. (262-271).

    https://doi.org/10.1145/3144457.3144471

  • Yang Y, Geng Y and Cao G. (2017). Energy-Aware Advertising Through Quality-Aware Prefetching on Smartphones 2017 IEEE 14th International Conference on Mobile Ad-Hoc and Sensor Systems (MASS). 10.1109/MASS.2017.24. 978-1-5386-2324-4. (144-152).

    http://ieeexplore.ieee.org/document/8108738/

  • Petsas T, Papadogiannakis A, Polychronakis M, Markatos E and Karagiannis T. (2017). Measurement, Modeling, and Analysis of the Mobile App Ecosystem. ACM Transactions on Modeling and Performance Evaluation of Computing Systems. 2:2. (1-33). Online publication date: 30-Jun-2017.

    https://doi.org/10.1145/2993419

  • Bangera P and Gorinsky S. (2017). Ads versus regular contents: Dissecting the web hosting ecosystem 2017 IFIP Networking Conference (IFIP Networking) and Workshops. 10.23919/IFIPNetworking.2017.8264851. 978-3-901882-94-4. (1-9).

    http://ieeexplore.ieee.org/document/8264851/

  • Gao C, Man Y, Xu H, Zhu J, Zhou Y and Lyu M. IntelliAd. Proceedings of the 39th International Conference on Software Engineering Companion. (253-255).

    https://doi.org/10.1109/ICSE-C.2017.123

  • Saborido R, Khomh F, Antoniol G and Guéhéneuc Y. Comprehension of ads-supported and paid Android applications. Proceedings of the 25th International Conference on Program Comprehension. (143-153).

    https://doi.org/10.1109/ICPC.2017.25

  • Li Z, Sun L, Yan Q, Srisa-an W and Chen Z. (2017). DroidClassifier: Efficient Adaptive Mining of Application-Layer Header for Classifying Android Malware. Security and Privacy in Communication Networks. 10.1007/978-3-319-59608-2_33. (597-616).

    http://link.springer.com/10.1007/978-3-319-59608-2_33

  • Chen G, Ji S and Copeland J. (2016). Towards a Framework to Facilitate the Mobile Advertising Ecosystem 2016 IEEE 22nd International Conference on Parallel and Distributed Systems (ICPADS). 10.1109/ICPADS.2016.0068. 978-1-5090-4457-3. (456-465).

    http://ieeexplore.ieee.org/document/7823783/

  • Nayam W, Laolee A, Charoenwatana L and Sripanidkulchai K. An analysis of mobile application network behavior. Proceedings of the 12th Asian Internet Engineering Conference. (9-16).

    https://doi.org/10.1145/3012695.3012697

  • Bashir M, Arshad S and Wilson C. "Recommended For You". Proceedings of the 2016 Internet Measurement Conference. (17-24).

    https://doi.org/10.1145/2987443.2987469

  • Leung C, Ren J, Choffnes D and Wilson C. Should You Use the App for That?. Proceedings of the 2016 Internet Measurement Conference. (365-372).

    https://doi.org/10.1145/2987443.2987456

  • Choffnes D. A Case for Personal Virtual Networks. Proceedings of the 15th ACM Workshop on Hot Topics in Networks. (8-14).

    https://doi.org/10.1145/3005745.3005753

  • Lee J and Shin D. (2016). Targeting Potential Active Users for Mobile App Install Advertising: An Exploratory Study. International Journal of Human–Computer Interaction. 10.1080/10447318.2016.1198547. 32:11. (827-834). Online publication date: 1-Nov-2016.

    https://www.tandfonline.com/doi/full/10.1080/10447318.2016.1198547

  • Ren J, Rao A, Lindorfer M, Legout A and Choffnes D. ReCon. Proceedings of the 14th Annual International Conference on Mobile Systems, Applications, and Services. (361-374).

    https://doi.org/10.1145/2906388.2906392

  • Pamboris A, Antoniou G, Makris C, Andreou P and Samaras G. AD-APT. Proceedings of the International Conference on Mobile Software Engineering and Systems. (175-178).

    https://doi.org/10.1145/2897073.2897090

  • Gui J, Li D, Wan M and Halfond W. Lightweight measurement and estimation of mobile ad energy consumption. Proceedings of the 5th International Workshop on Green and Sustainable Software. (1-7).

    https://doi.org/10.1145/2896967.2896970

  • Fiandrino C, Kliazovich D, Bouvry P and Zomaya A. (2016). Network coding-based content distribution in cellular access networks ICC 2016 - 2016 IEEE International Conference on Communications. 10.1109/ICC.2016.7510784. 978-1-4799-6664-6. (1-6).

    http://ieeexplore.ieee.org/document/7510784/

  • Furner C, Racherla P and Babb J. What We Know and Do Not Know About Mobile App Usage and Stickiness. Geospatial Research. 10.4018/978-1-4666-9845-1.ch005. (117-141).

    http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-4666-9845-1.ch005

  • Jiang J, Gui X, Shi Z, Yuan X and Wang C. Towards Secure and Practical Targeted Mobile Advertising. Proceedings of the 2015 11th International Conference on Mobile Ad-hoc and Sensor Networks (MSN). (79-88).

    https://doi.org/10.1109/MSN.2015.17

  • Carrascosa J, Mikians J, Cuevas R, Erramilli V and Laoutaris N. I always feel like somebody's watching me. Proceedings of the 11th ACM Conference on Emerging Networking Experiments and Technologies. (1-13).

    https://doi.org/10.1145/2716281.2836098

  • Su X, Zhang D, Li W and Wang X. (2015). AndroGenerator. Security and Communication Networks. 8:18. (4273-4288). Online publication date: 1-Dec-2015.

    https://doi.org/10.1002/sec.1341

  • Pujol E, Hohlfeld O and Feldmann A. Annoyed Users. Proceedings of the 2015 Internet Measurement Conference. (93-106).

    https://doi.org/10.1145/2815675.2815705

  • Mouawi R, Elhajj I, Chehab A and Kayssi A. (2015). Comparison of in-app ads traffic in different ad networks 2015 IEEE 11th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob). 10.1109/WiMOB.2015.7348014. 978-1-4673-7701-0. (581-587).

    http://ieeexplore.ieee.org/document/7348014/

  • Yao H, Ranjan G, Tongaonkar A, Liao Y and Mao Z. SAMPLES. Proceedings of the 21st Annual International Conference on Mobile Computing and Networking. (439-451).

    https://doi.org/10.1145/2789168.2790097

  • Chaudhry A, Crowcroft J, Howard H, Madhavapeddy A, Mortier R, Haddadi H and McAuley D. Personal data. Proceedings of The Fifth Decennial Aarhus Conference on Critical Alternatives. (29-32).

    https://doi.org/10.7146/aahcc.v1i1.21312

  • Furner C, Racherla P and Babb J. (2015). What We Know and Do Not Know About Mobile App Usage and Stickiness. International Journal of E-Services and Mobile Applications. 7:3. (48-69). Online publication date: 1-Jul-2015.

    /doi/10.5555/2796234.2796238

  • Furner C, Racherla P and Babb J. What We Know and Do Not Know About Mobile App Usage and Stickiness. International Journal of E-Services and Mobile Applications. 10.4018/IJESMA.2015070104. 7:3. (48-69).

    http://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/IJESMA.2015070104

  • Seneviratne S, Kolamunna H and Seneviratne A. A measurement study of tracking in paid mobile applications. Proceedings of the 8th ACM Conference on Security & Privacy in Wireless and Mobile Networks. (1-6).

    https://doi.org/10.1145/2766498.2766523

  • Nath S. MAdScope. Proceedings of the 13th Annual International Conference on Mobile Systems, Applications, and Services. (59-73).

    https://doi.org/10.1145/2742647.2742653

  • Gui J, Mcilroy S, Nagappan M and Halfond W. Truth in advertising. Proceedings of the 37th International Conference on Software Engineering - Volume 1. (100-110).

    /doi/10.5555/2818754.2818769

  • Gui J, Mcilroy S, Nagappan M and Halfond W. (2015). Truth in Advertising: The Hidden Cost of Mobile Ads for Software Developers 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering (ICSE). 10.1109/ICSE.2015.32. 978-1-4799-1934-5. (100-110).

    http://ieeexplore.ieee.org/document/7194565/

  • Mendoza A, Singh K and Gu G. (2015). What is wrecking your data plan? A measurement study of mobile web overhead IEEE INFOCOM 2015 - IEEE Conference on Computer Communications. 10.1109/INFOCOM.2015.7218666. 978-1-4799-8381-0. (2740-2748).

    http://ieeexplore.ieee.org/document/7218666/

  • Rula J, Jun B and Bustamante F. Mobile AD(D). Proceedings of the 16th International Workshop on Mobile Computing Systems and Applications. (123-128).

    https://doi.org/10.1145/2699343.2699365

  • Knorr K, Aspinall D and Wolters M. (2015). On the Privacy, Security and Safety of Blood Pressure and Diabetes Apps. ICT Systems Security and Privacy Protection. 10.1007/978-3-319-18467-8_38. (571-584).

    http://link.springer.com/10.1007/978-3-319-18467-8_38

  • Metwalley H, Traverso S, Mellia M, Miskovic S and Baldi M. (2015). The Online Tracking Horde: A View from Passive Measurements. Traffic Monitoring and Analysis. 10.1007/978-3-319-17172-2_8. (111-125).

    http://link.springer.com/10.1007/978-3-319-17172-2_8

  • Davidson D, Fredrikson M and Livshits B. MoRePriv. Proceedings of the 30th Annual Computer Security Applications Conference. (236-245).

    https://doi.org/10.1145/2664243.2664266

  • Sathiaseelan A, Mortier R, Goulden M, Greiffenhagen C, Radenkovic M, Crowcroft J and McAuley D. A Feasibility Study of an In-the-Wild Experimental Public Access WiFi Network. Proceedings of the Fifth ACM Symposium on Computing for Development. (33-42).

    https://doi.org/10.1145/2674377.2674383

  • Zarras A, Kapravelos A, Stringhini G, Holz T, Kruegel C and Vigna G. The Dark Alleys of Madison Avenue. Proceedings of the 2014 Conference on Internet Measurement Conference. (373-380).

    https://doi.org/10.1145/2663716.2663719

  • Carpen Amarie M, Pefkianakis I and Lundgren H. Mobile video ad caching on smartphones. Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing. (57-61).

    https://doi.org/10.1145/2632048.2632075

  • Kuzuno H and Magata K. (2014). Detecting Advertisement Module Network Behavior with Graph Modeling 2014 Ninth Asia Joint Conference on Information Security (ASIA JCIS). 10.1109/AsiaJCIS.2014.26. 978-1-4799-5733-0. (1-10).

    http://ieeexplore.ieee.org/document/7023192/

  • Qian F, Sen S and Spatscheck O. Characterizing resource usage for mobile web browsing. Proceedings of the 12th annual international conference on Mobile systems, applications, and services. (218-231).

    https://doi.org/10.1145/2594368.2594372

  • Rasmussen K, Wilson A and Hindle A. Green mining: energy consumption of advertisement blocking methods. Proceedings of the 3rd International Workshop on Green and Sustainable Software. (38-45).

    https://doi.org/10.1145/2593743.2593749

  • Zhang L, Stover C, Lins A, Buckley C and Mohapatra P. (2014). Characterizing Mobile Open APIs in smartphone apps 2014 IFIP Networking Conference. 10.1109/IFIPNetworking.2014.6857130. 978-3-901882-58-6. (1-9).

    http://ieeexplore.ieee.org/document/6857130/

  • Ullah I, Boreli R, Kaafar M and Kanhere S. (2014). Characterising user targeting for in-App Mobile Ads IEEE INFOCOM 2014 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS). 10.1109/INFCOMW.2014.6849290. 978-1-4799-3088-3. (547-552).

    http://ieeexplore.ieee.org/document/6849290/

  • Falahrastegar M, Haddadi H, Uhlig S and Mortier R. (2014). The Rise of Panopticons: Examining Region-Specific Third-Party Web Tracking. Traffic Monitoring and Analysis. 10.1007/978-3-642-54999-1_9. (104-114).

    http://link.springer.com/10.1007/978-3-642-54999-1_9

  • Chen X, Jindal A and Hu Y. How much energy can we save from prefetching ads?. Proceedings of the Workshop on Power-Aware Computing and Systems. (1-5).

    https://doi.org/10.1145/2525526.2525848

  • Gill P, Erramilli V, Chaintreau A, Krishnamurthy B, Papagiannaki K and Rodriguez P. Best paper -- Follow the money. Proceedings of the 2013 conference on Internet measurement conference. (141-148).

    https://doi.org/10.1145/2504730.2504768

  • Vallina-Rodriguez N, Auçinas A, Almeida M, Grunenberger Y, Papagiannaki K and Crowcroft J. RILAnalyzer. Proceedings of the 2013 conference on Internet measurement conference. (257-264).

    https://doi.org/10.1145/2504730.2504764

  • Petsas T, Papadogiannakis A, Polychronakis M, Markatos E and Karagiannis T. Rise of the planet of the apps. Proceedings of the 2013 conference on Internet measurement conference. (277-290).

    https://doi.org/10.1145/2504730.2504749

  • Zhang Y, Tan C and Qun L. CacheKeeper. Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing. (265-274).

    https://doi.org/10.1145/2493432.2493484

  • Kamleitner B, Dickert S, Falahrastegar M and Haddadi H. Information bazaar. Proceedings of the 5th ACM workshop on HotPlanet. (57-62).

    https://doi.org/10.1145/2491159.2491161

  • Seneviratne S, Seneviratne A and Mohapatra P. Personal cloudlets for privacy and resource efficiency in mobile in-app advertising. Proceedings of the first international workshop on Mobile cloud computing & networking. (33-40).

    https://doi.org/10.1145/2492348.2492356

  • Khan A, Jayarajah K, Han D, Misra A, Balan R and Seshan S. CAMEO. Proceeding of the 11th annual international conference on Mobile systems, applications, and services. (125-138).

    https://doi.org/10.1145/2462456.2464436

  • Rocco M. Computationally efficient techniques for economic mechanisms. Proceedings of the 2013 international conference on Autonomous agents and multi-agent systems. (1451-1452).

    /doi/10.5555/2484920.2485271

  • Mohan P, Nath S and Riva O. Prefetching mobile ads. Proceedings of the 8th ACM European Conference on Computer Systems. (267-280).

    https://doi.org/10.1145/2465351.2465378

  • Dai S, Tongaonkar A, Wang X, Nucci A and Song D. (2013). NetworkProfiler: Towards automatic fingerprinting of Android apps IEEE INFOCOM 2013 - IEEE Conference on Computer Communications. 10.1109/INFCOM.2013.6566868. 978-1-4673-5946-7. (809-817).

    http://ieeexplore.ieee.org/document/6566868/

  • Wilke C, Götz S and Richly S. JouleUnit. Proceedings of the 2013 workshop on Green in/by software engineering. (9-14).

    https://doi.org/10.1145/2451605.2451610

  • Wilke C, Piechnick C, Richly S, Püschel G, Götz S and Aßmann U. Comparing mobile applications' energy consumption. Proceedings of the 28th Annual ACM Symposium on Applied Computing. (1177-1179).

    https://doi.org/10.1145/2480362.2480583

  • Tongaonkar A, Dai S, Nucci A and Song D. Understanding mobile app usage patterns using in-app advertisements. Proceedings of the 14th international conference on Passive and Active Measurement. (63-72).

    https://doi.org/10.1007/978-3-642-36516-4_7

  • Seneviratne A, Thilakarathna K, Seneviratne S, Kaafar M and Mohapatra P. (2013). Reconciling bitter rivals: Towards privacy-aware and bandwidth efficient mobile Ads delivery networks 2013 Fifth International Conference on Communication Systems and Networks (COMSNETS). 10.1109/COMSNETS.2013.6465567. 978-1-4673-5494-3. (1-10).

    http://ieeexplore.ieee.org/document/6465567/

  • Rao A, Sherry J, Legout A, Krishnamurthy A, Dabbous W and Choffnes D. Meddle. Proceedings of the 2012 ACM conference on CoNEXT student workshop. (65-66).

    https://doi.org/10.1145/2413247.2413286

  • Mortier R, Haddadi H, Henderson T, McAuley D and Crowcroft J. Human-Data Interaction: The Human Face of the Data-Driven Society. SSRN Electronic Journal. 10.2139/ssrn.2508051.

    http://www.ssrn.com/abstract=2508051