• Garba A, Khalid S, Aleryni A, Ullah I, Tairan N, Shah H and Mumin D. (2024). Utilizing Ant Colony Optimization for Result Merging in Federated Search. Engineering, Technology & Applied Science Research. 10.48084/etasr.7302. 14:4. (14832-14839).

    https://etasr.com/index.php/ETASR/article/view/7302

  • Garba A, Khalid S and Ullah I. (2024). Understanding the impact of query expansion on federated search. Multimedia Tools and Applications. 83:4. (10393-10407). Online publication date: 1-Jan-2024.

    https://doi.org/10.1007/s11042-023-15831-x

  • Garba A, Wu S and Khalid S. (2023). Federated search techniques: an overview of the trends and state of the art. Knowledge and Information Systems. 10.1007/s10115-023-01922-6. 65:12. (5065-5095). Online publication date: 1-Dec-2023.

    https://link.springer.com/10.1007/s10115-023-01922-6

  • Liu Y, Dong Y, Wang H, Jiang H and Xu Q. Distributed Fog Computing and Federated-Learning-Enabled Secure Aggregation for IoT Devices. IEEE Internet of Things Journal. 10.1109/JIOT.2022.3176305. 9:21. (21025-21037).

    https://ieeexplore.ieee.org/document/9778196/

  • Ma L, Song D, Liao L and Wang J. A Hybrid Discriminative Mixture Model for Cumulative Citation Recommendation. IEEE Transactions on Knowledge and Data Engineering. 10.1109/TKDE.2019.2893328. 32:4. (617-630).

    https://ieeexplore.ieee.org/document/8613930/

  • Qian J, Gochhayat S and Hansen L. (2019). Distributed Active Learning Strategies on Edge Computing 2019 6th IEEE International Conference on Cyber Security and Cloud Computing (CSCloud)/ 2019 5th IEEE International Conference on Edge Computing and Scalable Cloud (EdgeCom). 10.1109/CSCloud/EdgeCom.2019.00029. 978-1-7281-1661-7. (221-226).

    https://ieeexplore.ieee.org/document/8854053/

  • (2017). Result Merging for Structured Queries on the Deep Web with Active Relevance Weight Estimation. Information Systems. 64:C. (93-103). Online publication date: 1-Mar-2017.

    https://doi.org/10.1016/j.is.2016.06.005

  • Xu C, Huang C and Wu S. (2016). Differential Evolution-Based Fusion for Results Diversification of Web Search. Web-Age Information Management. 10.1007/978-3-319-39937-9_33. (429-440).

    http://link.springer.com/10.1007/978-3-319-39937-9_33

  • Wang J, Song D, Wang Q, Zhang Z, Si L, Liao L and Lin C. An Entity Class-Dependent Discriminative Mixture Model for Cumulative Citation Recommendation. Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval. (635-644).

    https://doi.org/10.1145/2766462.2767698

  • Ghansah B and Wu S. (2015). Distributed Information Retrieval: Developments and Strategies. International Journal of Engineering Research in Africa. 10.4028/www.scientific.net/JERA.16.110. 16. (110-144).

    https://www.scientific.net/JERA.16.110

  • Ghosh K, Parui S and Majumder P. (2015). Learning combination weights in data fusion using Genetic Algorithms. Information Processing and Management: an International Journal. 51:3. (306-328). Online publication date: 1-May-2015.

    https://doi.org/10.1016/j.ipm.2014.12.002

  • Wang C, Liu Y, Zhang M, Ma S, Zheng M, Qian J and Zhang K. Incorporating vertical results into search click models. Proceedings of the 36th international ACM SIGIR conference on Research and development in information retrieval. (503-512).

    https://doi.org/10.1145/2484028.2484036