• Jesse M, Bauer C and Jannach D. (2022). Intra-list similarity and human diversity perceptions of recommendations: the details matter. User Modeling and User-Adapted Interaction. 10.1007/s11257-022-09351-w. 33:4. (769-802). Online publication date: 1-Sep-2023.

    https://link.springer.com/10.1007/s11257-022-09351-w

  • Rafique W, Hafid A and Qadir J. (2023). Developing smart city services using intent‐aware recommendation systems: A survey. Transactions on Emerging Telecommunications Technologies. 10.1002/ett.4728. 34:4. Online publication date: 1-Apr-2023.

    https://onlinelibrary.wiley.com/doi/10.1002/ett.4728

  • Figuerêdo J and Calumby R. (2022). Unsupervised query-adaptive implicit subtopic discovery for diverse image retrieval based on intrinsic cluster quality. Multimedia Tools and Applications. 10.1007/s11042-022-13050-4. 81:30. (42991-43011). Online publication date: 1-Dec-2022.

    https://link.springer.com/10.1007/s11042-022-13050-4

  • Castells P, Hurley N and Vargas S. (2022). Novelty and Diversity in Recommender Systems. Recommender Systems Handbook. 10.1007/978-1-0716-2197-4_16. (603-646).

    https://link.springer.com/10.1007/978-1-0716-2197-4_16

  • Kaya M, Bridge D and Tintarev N. Ensuring Fairness in Group Recommendations by Rank-Sensitive Balancing of Relevance. Proceedings of the 14th ACM Conference on Recommender Systems. (101-110).

    https://doi.org/10.1145/3383313.3412232

  • Kaya M and Bridge D. A comparison of calibrated and intent-aware recommendations. Proceedings of the 13th ACM Conference on Recommender Systems. (151-159).

    https://doi.org/10.1145/3298689.3347045

  • Kaya M and Bridge D. (2019). Subprofile-aware diversification of recommendations. User Modeling and User-Adapted Interaction. 29:3. (661-700). Online publication date: 1-Jul-2019.

    https://doi.org/10.1007/s11257-019-09235-6

  • Figueira P, Belém F, Almeida J and Gonçalves M. Automatic generation of initial reading lists. Proceedings of the 18th Joint Conference on Digital Libraries. (1-10).

    https://doi.org/10.1109/JCDL.2019.00011

  • Kaya M and Bridge D. Community-aware diversification of recommendations. Proceedings of the 34th ACM/SIGAPP Symposium on Applied Computing. (1639-1646).

    https://doi.org/10.1145/3297280.3297439

  • Garba A, Khalid S, Khusro S and Ullah I. (2019). Search Results Diversification based on Subtopics Attention Network 2019 2nd International Conference on Communication, Computing and Digital systems (C-CODE). 10.1109/C-CODE.2019.8681009. 978-1-5386-9609-5. (126-131).

    https://ieeexplore.ieee.org/document/8681009/

  • Cai H and Zhang F. BS-SC: An Unsupervised Approach for Detecting Shilling Profiles in Collaborative Recommender Systems. IEEE Transactions on Knowledge and Data Engineering. 10.1109/TKDE.2019.2946247. (1-1).

    https://ieeexplore.ieee.org/document/8862947/

  • Nishioka C, Hauke J and Scherp A. (2019). Research Paper Recommender System with Serendipity Using Tweets vs. Diversification. Digital Libraries at the Crossroads of Digital Information for the Future. 10.1007/978-3-030-34058-2_7. (63-70).

    http://link.springer.com/10.1007/978-3-030-34058-2_7

  • Xu B, Lin H, Lin Y, Ma Y, Yang L, Wang J and Yang Z. (2018). Improve Biomedical Information Retrieval Using Modified Learning to Rank Methods. IEEE/ACM Transactions on Computational Biology and Bioinformatics. 15:6. (1797-1809). Online publication date: 1-Nov-2018.

    https://doi.org/10.1109/TCBB.2016.2578337

  • Steck H. Calibrated recommendations. Proceedings of the 12th ACM Conference on Recommender Systems. (154-162).

    https://doi.org/10.1145/3240323.3240372

  • Wasilewski J and Hurley N. Intent-aware Item-based Collaborative Filtering for Personalised Diversification. Proceedings of the 26th Conference on User Modeling, Adaptation and Personalization. (81-89).

    https://doi.org/10.1145/3209219.3209234

  • Liang S, Yilmaz E, Shen H, Rijke M and Croft W. (2017). Search Result Diversification in Short Text Streams. ACM Transactions on Information Systems. 36:1. (1-35). Online publication date: 31-Jan-2018.

    https://doi.org/10.1145/3057282

  • Wasilewski J and Hurley N. Personalised Diversification Using Intent-Aware Portfolio. Adjunct Publication of the 25th Conference on User Modeling, Adaptation and Personalization. (71-76).

    https://doi.org/10.1145/3099023.3099067

  • Oroszlanyova M, Lopes C, Nunes S and Ribeiro C. (2017). Predicting the situational relevance of health web documents 2017 12th Iberian Conference on Information Systems and Technologies (CISTI). 10.23919/CISTI.2017.7975854. 978-9-8998-4347-9. (1-6).

    http://ieeexplore.ieee.org/document/7975854/

  • Manrique R and Mariño O. (2017). Diversified Semantic Query Reformulation. Knowledge Engineering and Semantic Web. 10.1007/978-3-319-69548-8_3. (23-37).

    https://link.springer.com/10.1007/978-3-319-69548-8_3

  • Zheng H, Wang Z and Xiao X. (2017). A Learning Approach to Hierarchical Search Result Diversification. Web and Big Data. 10.1007/978-3-319-63564-4_25. (303-310).

    http://link.springer.com/10.1007/978-3-319-63564-4_25

  • Xing X, Sha C and Niu J. (2017). Improving Topic Diversity in Recommendation Lists: Marginally or Proportionally?. Web and Big Data. 10.1007/978-3-319-63564-4_12. (142-150).

    http://link.springer.com/10.1007/978-3-319-63564-4_12

  • Shi R, Wang H, Wang T, Hou Y, Tang Y, Li J and Gao H. (2017). Similarity Search Combining Query Relaxation and Diversification. Database Systems for Advanced Applications. 10.1007/978-3-319-55699-4_5. (65-84).

    http://link.springer.com/10.1007/978-3-319-55699-4_5

  • Liang S, Cai F, Ren Z and de Rijke M. (2016). Efficient Structured Learning for Personalized Diversification. IEEE Transactions on Knowledge and Data Engineering. 28:11. (2958-2973). Online publication date: 1-Nov-2016.

    https://doi.org/10.1109/TKDE.2016.2594064

  • Xu C, Chen T and Wu S. (2016). Performance evaluation of search result diversification methods and their stability 2016 3rd International Conference on Systems and Informatics (ICSAI). 10.1109/ICSAI.2016.7811047. 978-1-5090-5521-0. (721-726).

    http://ieeexplore.ieee.org/document/7811047/

  • (2016). On interactive learning-to-rank for IR. Neurocomputing. 208:C. (3-24). Online publication date: 5-Oct-2016.

    https://doi.org/10.1016/j.neucom.2016.03.084

  • Cai F, Reinanda R and Rijke M. (2016). Diversifying Query Auto-Completion. ACM Transactions on Information Systems. 34:4. (1-33). Online publication date: 14-Sep-2016.

    https://doi.org/10.1145/2910579

  • Kharazmi S, Scholer F, Vallet D and Sanderson M. (2016). Examining Additivity and Weak Baselines. ACM Transactions on Information Systems. 34:4. (1-18). Online publication date: 14-Sep-2016.

    https://doi.org/10.1145/2882782

  • Naini K, Altingovde I and Siberski W. (2016). Scalable and Efficient Web Search Result Diversification. ACM Transactions on the Web. 10:3. (1-30). Online publication date: 29-Aug-2016.

    https://doi.org/10.1145/2907948

  • Sha C, Wang K, Zhang D, Wang X and Zhou A. (2016). Optimizing top-k retrieval. Frontiers of Computer Science: Selected Publications from Chinese Universities. 10:3. (477-487). Online publication date: 1-Jun-2016.

    https://doi.org/10.1007/s11704-015-5222-7

  • Belém F, Batista C, Santos R, Almeida J and Gonçalves M. (2016). Beyond Relevance. ACM Transactions on Intelligent Systems and Technology. 7:3. (1-34). Online publication date: 1-Apr-2016.

    https://doi.org/10.1145/2801130

  • Wang C and Akella R. Concept-Based Relevance Models for Medical and Semantic Information Retrieval. Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. (173-182).

    https://doi.org/10.1145/2806416.2806497

  • Hu S, Dou Z, Wang X, Sakai T and Wen J. Search Result Diversification Based on Hierarchical Intents. Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. (63-72).

    https://doi.org/10.1145/2806416.2806455

  • Ghansah B, Wu S and Ghansah N. (2015). Rankboost-Based Result Merging 2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing (CIT/IUCC/DASC/PICOM). 10.1109/CIT/IUCC/DASC/PICOM.2015.136. 978-1-5090-0154-5. (907-914).

    http://ieeexplore.ieee.org/document/7363176/

  • Ozdemiray A and Altingovde I. (2015). Explicit search result diversification using score and rank aggregation methods. Journal of the Association for Information Science and Technology. 66:6. (1212-1228). Online publication date: 1-Jun-2015.

    /doi/10.5555/3150797.3150807

  • Chen L and Cong G. Diversity-Aware Top-k Publish/Subscribe for Text Stream. Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data. (347-362).

    https://doi.org/10.1145/2723372.2749451

  • Castells P, Hurley N and Vargas S. (2015). Novelty and Diversity in Recommender Systems. Recommender Systems Handbook. 10.1007/978-1-4899-7637-6_26. (881-918).

    https://link.springer.com/10.1007/978-1-4899-7637-6_26

  • Koochi M, Hussin A and Dahlan H. (2014). Improving recommendation diversity using tensor decomposition and clustering approaches 2014 Fourth World Congress on Information and Communication Technologies (WICT). 10.1109/WICT.2014.7076912. 978-1-4799-8115-1. (240-245).

    http://ieeexplore.ieee.org/document/7076912/

  • Vargas S, Baltrunas L, Karatzoglou A and Castells P. Coverage, redundancy and size-awareness in genre diversity for recommender systems. Proceedings of the 8th ACM Conference on Recommender systems. (209-216).

    https://doi.org/10.1145/2645710.2645743

  • Calumby R, da Silva Torres R and Goncalves M. (2014). Diversity-driven learning for multimodal image retrieval with relevance feedback 2014 IEEE International Conference on Image Processing (ICIP). 10.1109/ICIP.2014.7025445. 978-1-4799-5751-4. (2197-2201).

    http://ieeexplore.ieee.org/document/7025445/

  • Liang S, Ren Z and de Rijke M. Personalized search result diversification via structured learning. Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. (751-760).

    https://doi.org/10.1145/2623330.2623650

  • Vargas S. Novelty and diversity enhancement and evaluation in recommender systems and information retrieval. Proceedings of the 37th international ACM SIGIR conference on Research & development in information retrieval. (1281-1281).

    https://doi.org/10.1145/2600428.2610382

  • Zhu Y, Lan Y, Guo J, Cheng X and Niu S. Learning for search result diversification. Proceedings of the 37th international ACM SIGIR conference on Research & development in information retrieval. (293-302).

    https://doi.org/10.1145/2600428.2609634

  • Zhang D, Chan C and Tan K. Processing spatial keyword query as a top-k aggregation query. Proceedings of the 37th international ACM SIGIR conference on Research & development in information retrieval. (355-364).

    https://doi.org/10.1145/2600428.2609562

  • Liang S, Ren Z and de Rijke M. Fusion helps diversification. Proceedings of the 37th international ACM SIGIR conference on Research & development in information retrieval. (303-312).

    https://doi.org/10.1145/2600428.2609561

  • Sha C, Wang K, Zhang K, Wang X and Zhou A. Diversifying Top-k Service Retrieval. Proceedings of the 2014 IEEE International Conference on Services Computing. (227-234).

    https://doi.org/10.1109/SCC.2014.38

  • Bhatt C, Pappas N, Habibi M and Popescu-Belis A. Multimodal Reranking of Content-based Recommendations for Hyperlinking Video Snippets. Proceedings of International Conference on Multimedia Retrieval. (225-232).

    https://doi.org/10.1145/2578726.2578752

  • Golbus P, Aslam J and Clarke C. (2013). Increasing evaluation sensitivity to diversity. Information Retrieval. 10.1007/s10791-012-9218-8. 16:4. (530-555). Online publication date: 1-Aug-2013.

    http://link.springer.com/10.1007/s10791-012-9218-8

  • Belém F. Beyond relevance. Proceedings of the 36th international ACM SIGIR conference on Research and development in information retrieval. (1140-1140).

    https://doi.org/10.1145/2484028.2484229

  • Hong D and Si L. Search result diversification in resource selection for federated search. Proceedings of the 36th international ACM SIGIR conference on Research and development in information retrieval. (613-622).

    https://doi.org/10.1145/2484028.2484091

  • Vargas S and Castells P. Exploiting the diversity of user preferences for recommendation. Proceedings of the 10th Conference on Open Research Areas in Information Retrieval. (129-136).

    /doi/10.5555/2491748.2491776