• Gabes M and Mühlberger A. (2024). Driving simulation: the effects of interactivity and presentation setting. Frontiers in Virtual Reality. 10.3389/frvir.2024.1484739. 5.

    https://www.frontiersin.org/articles/10.3389/frvir.2024.1484739/full

  • Chung W and Barnett-Cowan M. Influence of Sensory Conflict on Perceived Timing of Passive Rotation in Virtual Reality. Multisensory Research. 10.1163/22134808-bja10074. 35:5. (367-389).

    https://brill.com/view/journals/msr/35/5/article-p367_1.xml

  • Blissing B, Bruzelius F and Eriksson O. (2022). The Effects on Driving Behavior When Using a Head-mounted Display in a Dynamic Driving Simulator. ACM Transactions on Applied Perception. 19:1. (1-18). Online publication date: 31-Jan-2022.

    https://doi.org/10.1145/3483793

  • Buhr M, Pfeiffer T, Reiners D, Cruz-Neira C and Jung B. (2022). Real-Time Aspects of VR Systems. Virtual and Augmented Reality (VR/AR). 10.1007/978-3-030-79062-2_7. (245-289).

    https://link.springer.com/10.1007/978-3-030-79062-2_7

  • Nguyen A, Rothacher Y, Efthymiou E, Lenggenhager B, Brugger P, Imbach L and Kunz A. Effect of Cognitive Load on Curvature Redirected Walking Thresholds. Proceedings of the 26th ACM Symposium on Virtual Reality Software and Technology. (1-5).

    https://doi.org/10.1145/3385956.3418950

  • Friston S. Low-Latency Rendering With Dataflow Architectures. IEEE Computer Graphics and Applications. 10.1109/MCG.2020.2980183. 40:3. (94-104).

    https://ieeexplore.ieee.org/document/9082277/

  • Yang Y, Zhang L, Yan S, Ning L, Li B, Yu C, Zhang X, Zhang X and Dai D. (2019). Low-cost, high-performance VR delay detection device based on PIN photodiode Optoelectronic Devices and Integration VIII. 10.1117/12.2537640. 9781510630857. (30).

    https://www.spiedigitallibrary.org/conference-proceedings-of-spie/11184/2537640/Low-cost-high-performance-VR-delay-detection-device-based-on/10.1117/12.2537640.full

  • Pohl S, Becher A, Grauschopf T and Axenie C. Neural Network 3D Body Pose Tracking and Prediction for Motion-to-Photon Latency Compensation in Distributed Virtual Reality. Artificial Neural Networks and Machine Learning – ICANN 2019: Image Processing. (429-442).

    https://doi.org/10.1007/978-3-030-30508-6_35

  • Holland O, Steinbach E, Prasad R, Liu Q, Dawy Z, Aijaz A, Pappas N, Chandra K, Rao V, Oteafy S, Eid M, Luden M, Bhardwaj A, Liu X, Sachs J and Araujo J. The IEEE 1918.1 “Tactile Internet” Standards Working Group and its Standards. Proceedings of the IEEE. 10.1109/JPROC.2018.2885541. 107:2. (256-279).

    https://ieeexplore.ieee.org/document/8605315/

  • Garzorz I and MacNeilage P. (2019). Towards dynamic modeling of visual-vestibular conflict detection. . 10.1016/bs.pbr.2019.03.018.

    https://linkinghub.elsevier.com/retrieve/pii/S0079612319300482

  • Westhoven M, Paul D and Alexander T. Head turn scaling below the threshold of perception in immersive virtual environments. Proceedings of the 22nd ACM Conference on Virtual Reality Software and Technology. (77-86).

    https://doi.org/10.1145/2993369.2993385

  • Zhang R and Kuhl S. Human sensitivity to dynamic rotation gains in head-mounted displays. Proceedings of the ACM Symposium on Applied Perception. (71-74).

    https://doi.org/10.1145/2492494.2492514

  • Bruder G, Steinicke F, Bolte B, Wieland P, Frenz H and Lappe M. (2013). Exploiting perceptual limitations and illusions to support walking through virtual environments in confined physical spaces. Displays. 10.1016/j.displa.2012.10.007. 34:2. (132-141). Online publication date: 1-Apr-2013.

    https://linkinghub.elsevier.com/retrieve/pii/S0141938212000832