• Tandon S, Kumar V and Singh V. (2024). Study of Code Smells: A Review and Research Agenda. International Journal of Mathematical, Engineering and Management Sciences. 10.33889/IJMEMS.2024.9.3.025. 9:3. (472-498).

    https://www.ijmems.in/cms/storage/app/public/uploads/volumes/25-IJMEMS-23-0476-9-3-472-498-2024.pdf

  • Wan Z, Zhang Y, Xia X, Jiang Y and Lo D. Software Architecture in Practice: Challenges and Opportunities. Proceedings of the 31st ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering. (1457-1469).

    https://doi.org/10.1145/3611643.3616367

  • Agouf N, Labsari S, Ducasse S, Etien A and Anquetil N. (2023). A Visualization for Client-Server Architecture Assessement 2023 IEEE Working Conference on Software Visualization (VISSOFT). 10.1109/VISSOFT60811.2023.00010. 979-8-3503-0829-7. (1-11).

    https://ieeexplore.ieee.org/document/10350072/

  • Oliveira A, Correia J, Sousa L, Assunção W, Coutinho D, Garcia A, Oizumi W, Barbosa C, Uchôa A and Pereira J. (2023). Don’t Forget the Exception! : Considering Robustness Changes to Identify Design Problems 2023 IEEE/ACM 20th International Conference on Mining Software Repositories (MSR). 10.1109/MSR59073.2023.00064. 979-8-3503-1184-6. (417-429).

    https://ieeexplore.ieee.org/document/10174045/

  • Jin W, Zhong D, Cai Y, Kazman R and Liu T. Evaluating the Impact of Possible Dependencies on Architecture-Level Maintainability. IEEE Transactions on Software Engineering. 10.1109/TSE.2022.3171288. 49:3. (1064-1085).

    https://ieeexplore.ieee.org/document/9765666/

  • Oliveira D, Assunção W, Garcia A, Fonseca B and Ribeiro M. (2022). Developers’ perception matters: machine learning to detect developer-sensitive smells. Empirical Software Engineering. 27:7. Online publication date: 1-Dec-2022.

    https://doi.org/10.1007/s10664-022-10234-2

  • Santos J and Petronilo G. (2022). Building empirical knowledge on the relationship between code smells and design patterns: An exploratory study. Journal of Software: Evolution and Process. 10.1002/smr.2487. 34:9. Online publication date: 1-Sep-2022.

    https://onlinelibrary.wiley.com/doi/10.1002/smr.2487

  • Baabad A, Zulzalil H, Hassan S and Baharom S. Characterizing the Architectural Erosion Metrics: A Systematic Mapping Study. IEEE Access. 10.1109/ACCESS.2022.3150847. 10. (22915-22940).

    https://ieeexplore.ieee.org/document/9709798/

  • Uchôa A, Assunção W and Garcia A. Do Critical Components Smell Bad? An Empirical Study with Component-based Software Product Lines. Proceedings of the 15th Brazilian Symposium on Software Components, Architectures, and Reuse. (21-30).

    https://doi.org/10.1145/3483899.3483907

  • Chaniotaki A and Sharma T. (2021). Architecture Smells and Pareto Principle: A Preliminary Empirical Exploration 2021 IEEE/ACM 18th International Conference on Mining Software Repositories (MSR). 10.1109/MSR52588.2021.00031. 978-1-7281-8710-5. (190-194).

    https://ieeexplore.ieee.org/document/9463110/

  • Li R, Liang P, Soliman M and Avgeriou P. (2021). Understanding Architecture Erosion: The Practitioners’ Perceptive 2021 IEEE/ACM 29th International Conference on Program Comprehension (ICPC). 10.1109/ICPC52881.2021.00037. 978-1-6654-1403-6. (311-322).

    https://ieeexplore.ieee.org/document/9463012/

  • Le D, Karthik S, Laser M and Medvidovic N. (2021). Architectural Decay as Predictor of Issue- and Change-Proneness 2021 IEEE 18th International Conference on Software Architecture (ICSA). 10.1109/ICSA51549.2021.00017. 978-1-7281-6260-7. (92-103).

    https://ieeexplore.ieee.org/document/9426752/

  • Sas D, Avgeriou P, Kruizinga R and Scheedler R. (2020). Exploring the Relation Between Co-changes and Architectural Smells. SN Computer Science. 10.1007/s42979-020-00407-5. 2:1. Online publication date: 1-Feb-2021.

    http://link.springer.com/10.1007/s42979-020-00407-5

  • Sobrinho E, De Lucia A and Maia M. (2021). A Systematic Literature Review on Bad Smells–5 W's: Which, When, What, Who, Where. IEEE Transactions on Software Engineering. 47:1. (17-66). Online publication date: 1-Jan-2021.

    https://doi.org/10.1109/TSE.2018.2880977

  • Cui D. Early Detection of Flawed Structural Dependencies During Software Evolution. IEEE Access. 10.1109/ACCESS.2021.3054472. 9. (28856-28871).

    https://ieeexplore.ieee.org/document/9335583/

  • Walker A, Das D and Cerny T. (2021). Automated Microservice Code-Smell Detection. Information Science and Applications. 10.1007/978-981-33-6385-4_20. (211-221).

    http://link.springer.com/10.1007/978-981-33-6385-4_20

  • Masmali O, Badreddin O and khandoker R. (2021). Metrics to Measure Code Complexity Based on Software Design: Practical Evaluation. Advances in Information and Communication. 10.1007/978-3-030-73103-8_9. (142-157).

    https://link.springer.com/10.1007/978-3-030-73103-8_9

  • Jin W, Cai Y, Kazman R, Zhang G, Zheng Q and Liu T. Exploring the architectural impact of possible dependencies in Python software. Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering. (758-770).

    https://doi.org/10.1145/3324884.3416619

  • Walker A, Das D and Cerny T. (2020). Automated Code-Smell Detection in Microservices Through Static Analysis: A Case Study. Applied Sciences. 10.3390/app10217800. 10:21. (7800).

    https://www.mdpi.com/2076-3417/10/21/7800

  • Sharma T, Singh P and Spinellis D. (2020). An empirical investigation on the relationship between design and architecture smells. Empirical Software Engineering. 25:5. (4020-4068). Online publication date: 1-Sep-2020.

    https://doi.org/10.1007/s10664-020-09847-2

  • Bafandeh Mayvan B, Rasoolzadegan A and Javan Jafari A. (2020). Bad smell detection using quality metrics and refactoring opportunities. Journal of Software: Evolution and Process. 32:8. Online publication date: 3-Aug-2020.

    https://doi.org/10.1002/smr.2255

  • Sousa L, Oizumi W, Garcia A, Oliveira A, Cedrim D and Lucena C. When Are Smells Indicators of Architectural Refactoring Opportunities. Proceedings of the 28th International Conference on Program Comprehension. (354-365).

    https://doi.org/10.1145/3387904.3389276

  • Adetunji T, Vincent O, Ugwunna C, Odeniyi L and Folorunso O. (2020). An Ontology-based Knowledge Acquisition Model for Software Anomalies Systems 2020 International Conference in Mathematics, Computer Engineering and Computer Science (ICMCECS). 10.1109/ICMCECS47690.2020.240896. 978-1-7281-3126-9. (1-6).

    https://ieeexplore.ieee.org/document/9077645/

  • Ivers J, Ozkaya I and Nord R. (2019). Can AI Close the Design-Code Abstraction Gap? 2019 34th IEEE/ACM International Conference on Automated Software Engineering Workshop (ASEW). 10.1109/ASEW.2019.00041. 978-1-7281-4136-7. (122-125).

    https://ieeexplore.ieee.org/document/8967435/

  • Oizumi W, Sousa L, Oliveira A, Carvalho L, Garcia A, Colanzi T and Oliveira R. (2019). On the Density and Diversity of Degradation Symptoms in Refactored Classes: A Multi-case Study 2019 IEEE 30th International Symposium on Software Reliability Engineering (ISSRE). 10.1109/ISSRE.2019.00042. 978-1-7281-4982-0. (346-357).

    https://ieeexplore.ieee.org/document/8987457/

  • Eposhi A, Oizumi W, Garcia A, Sousa L, Oliveira R and Oliveira A. Removal of design problems through refactorings. Proceedings of the 27th International Conference on Program Comprehension. (148-153).

    https://doi.org/10.1109/ICPC.2019.00032

  • Martins J, Bezerra C and Uchôa A. Analyzing the Impact of Inter-smell Relations on Software Maintainability. Proceedings of the XV Brazilian Symposium on Information Systems. (1-8).

    https://doi.org/10.1145/3330204.3330254

  • Lenhard J, Blom M and Herold S. (2019). Exploring the suitability of source code metrics for indicating architectural inconsistencies. Software Quality Journal. 27:1. (241-274). Online publication date: 1-Mar-2019.

    https://doi.org/10.1007/s11219-018-9404-z

  • Oizumi W, Sousa L, Oliveira A, Garcia A, Agbachi A, Oliveira R and Lucena C. (2018). On the identification of design problems in stinky code: experiences and tool support. Journal of the Brazilian Computer Society. 10.1186/s13173-018-0078-y. 24:1. Online publication date: 1-Dec-2018.

    https://journal-bcs.springeropen.com/articles/10.1186/s13173-018-0078-y

  • da S. Carvalho L, Novais R and Mendonça M. Investigating the Relationship between Code Smell Agglomerations and Architectural Concerns. Proceedings of the VII Brazilian Symposium on Software Components, Architectures, and Reuse. (3-12).

    https://doi.org/10.1145/3267183.3267184

  • Sousa L, Oliveira A, Oizumi W, Barbosa S, Garcia A, Lee J, Kalinowski M, de Mello R, Fonseca B, Oliveira R, Lucena C and Paes R. Identifying design problems in the source code. Proceedings of the 40th International Conference on Software Engineering. (921-931).

    https://doi.org/10.1145/3180155.3180239

  • Guimarães E, Vidal S, Garcia A, Diaz Pace J and Marcos C. (2018). Exploring architecture blueprints for prioritizing critical code anomalies: Experiences and tool support. Software: Practice and Experience. 10.1002/spe.2563. 48:5. (1077-1106). Online publication date: 1-May-2018.

    https://onlinelibrary.wiley.com/doi/10.1002/spe.2563

  • Le D, Link D, Shahbazian A and Medvidovic N. (2018). An Empirical Study of Architectural Decay in Open-Source Software 2018 IEEE International Conference on Software Architecture (ICSA). 10.1109/ICSA.2018.00027. 978-1-5386-6398-1. (176-17609).

    https://ieeexplore.ieee.org/document/8417151/

  • Paiva T, Damasceno A, Figueiredo E and Sant’Anna C. (2017). On the evaluation of code smells and detection tools. Journal of Software Engineering Research and Development. 10.1186/s40411-017-0041-1. 5:1. Online publication date: 1-Dec-2017.

    http://jserd.springeropen.com/articles/10.1186/s40411-017-0041-1

  • de Mello R, Oliveira R and Garcia A. On the influence of human factors for identifying code smells. Proceedings of the 11th ACM/IEEE International Symposium on Empirical Software Engineering and Measurement. (68-77).

    https://doi.org/10.1109/ESEM.2017.13

  • Sousa L, Oliveira R, Garcia A, Lee J, Conte T, Oizumi W, de Mello R, Lopes A, Valentim N, Oliveira E and Lucena C. How Do Software Developers Identify Design Problems?. Proceedings of the XXXI Brazilian Symposium on Software Engineering. (54-63).

    https://doi.org/10.1145/3131151.3131168

  • Souza P, Sousa B, Ferreira K and Bigonha M. Applying software metric thresholds for detection of bad smells. Proceedings of the 11th Brazilian Symposium on Software Components, Architectures, and Reuse. (1-10).

    https://doi.org/10.1145/3132498.3134268

  • Oizumi W, Sousa L, Garcia A, Oliveira R, Oliveira A, Agbachi O and Lucena C. Revealing design problems in stinky code. Proceedings of the 11th Brazilian Symposium on Software Components, Architectures, and Reuse. (1-10).

    https://doi.org/10.1145/3132498.3132514

  • Nascimento R and Sant'Anna C. Investigating the relationship between bad smells and bugs in software systems. Proceedings of the 11th Brazilian Symposium on Software Components, Architectures, and Reuse. (1-10).

    https://doi.org/10.1145/3132498.3132513

  • Lenhard J, Hassan M, Blom M and Herold S. Are code smell detection tools suitable for detecting architecture degradation?. Proceedings of the 11th European Conference on Software Architecture: Companion Proceedings. (138-144).

    https://doi.org/10.1145/3129790.3129808

  • Cedrim D, Garcia A, Mongiovi M, Gheyi R, Sousa L, de Mello R, Fonseca B, Ribeiro M and Chávez A. Understanding the impact of refactoring on smells: a longitudinal study of 23 software projects. Proceedings of the 2017 11th Joint Meeting on Foundations of Software Engineering. (465-475).

    https://doi.org/10.1145/3106237.3106259

  • Sousa B, Souza P, Fernandes E, Ferreira K and Bigonha M. FindSmells. Proceedings of the 25th International Conference on Program Comprehension. (360-363).

    https://doi.org/10.1109/ICPC.2017.8

  • de Mello R, Oliveira R, Sousa L and Garcia A. Towards effective teams for the identification of code smells. Proceedings of the 10th International Workshop on Cooperative and Human Aspects of Software Engineering. (62-65).

    https://doi.org/10.1109/CHASE.2017.11

  • Olsson T, Ericsson M and Wingkvist A. (2017). Motivation and Impact of Modeling Erosion Using Static Architecture Conformance Checking 2017 IEEE International Conference on Software Architecture Workshops (ICSAW). 10.1109/ICSAW.2017.15. 978-1-5090-4793-2. (204-209).

    http://ieeexplore.ieee.org/document/7958488/

  • Rasool G and Arshad Z. (2016). A Lightweight Approach for Detection of Code Smells. Arabian Journal for Science and Engineering. 10.1007/s13369-016-2238-8. 42:2. (483-506). Online publication date: 1-Feb-2017.

    http://link.springer.com/10.1007/s13369-016-2238-8

  • Gupta A, Suri B and Misra S. (2017). A Systematic Literature Review: Code Bad Smells in Java Source Code. Computational Science and Its Applications – ICCSA 2017. 10.1007/978-3-319-62404-4_49. (665-682).

    http://link.springer.com/10.1007/978-3-319-62404-4_49

  • Fernandes E, Vale G, Sousa L, Figueiredo E, Garcia A and Lee J. (2017). No Code Anomaly is an Island. Mastering Scale and Complexity in Software Reuse. 10.1007/978-3-319-56856-0_4. (48-64).

    http://link.springer.com/10.1007/978-3-319-56856-0_4

  • Kovács A and Szabados K. (2016). Internal quality evolution of a large test system – an industrial study. Acta Universitatis Sapientiae, Informatica. 10.1515/ausi-2016-0010. 8:2. (216-240). Online publication date: 1-Dec-2016.

    https://www.sciendo.com/article/10.1515/ausi-2016-0010

  • Olsson T, Toll D, Ericsson M and Wingkvist A. Evaluation of an architectural conformance checking software service. Proccedings of the 10th European Conference on Software Architecture Workshops. (1-7).

    https://doi.org/10.1145/2993412.3003391

  • Besker T, Martini A and Bosch J. (2016). A Systematic Literature Review and a Unified Model of ATD 2016 42th Euromicro Conference on Software Engineering and Advanced Applications (SEAA). 10.1109/SEAA.2016.42. 978-1-5090-2820-7. (189-197).

    http://ieeexplore.ieee.org/document/7592796/

  • Fernandes E, Oliveira J, Vale G, Paiva T and Figueiredo E. A review-based comparative study of bad smell detection tools. Proceedings of the 20th International Conference on Evaluation and Assessment in Software Engineering. (1-12).

    https://doi.org/10.1145/2915970.2915984

  • da Silva Sousa L. Spotting design problems with smell agglomerations. Proceedings of the 38th International Conference on Software Engineering Companion. (863-866).

    https://doi.org/10.1145/2889160.2889273

  • Oizumi W, Garcia A, da Silva Sousa L, Cafeo B and Zhao Y. Code anomalies flock together. Proceedings of the 38th International Conference on Software Engineering. (440-451).

    https://doi.org/10.1145/2884781.2884868

  • Oizumi W, Garcia A, Colanzi T, Ferreira M and Staa A. (2015). On the relationship of code-anomaly agglomerations and architectural problems. Journal of Software Engineering Research and Development. 10.1186/s40411-015-0025-y. 3:1. Online publication date: 1-Dec-2015.

    https://jserd.springeropen.com/articles/10.1186/s40411-015-0025-y

  • Rasool G and Arshad Z. (2015). A review of code smell mining techniques. Journal of Software: Evolution and Process. 27:11. (867-895). Online publication date: 1-Nov-2015.

    https://doi.org/10.1002/smr.1737

  • Fenske W. Code smells in highly configurable software. Proceedings of the 2015 IEEE International Conference on Software Maintenance and Evolution (ICSME). (602-605).

    https://doi.org/10.1109/ICSM.2015.7332523

  • Ozkaya I, Nord R, Koziolek H and Avgeriou P. (2015). Toward Simpler, not Simplistic, Quantification of Software Architecture and Metrics. ACM SIGSOFT Software Engineering Notes. 40:5. (43-46). Online publication date: 14-Sep-2015.

    https://doi.org/10.1145/2815021.2815037

  • Vale G, Albuquerque D, Figueiredo E and Garcia A. Defining metric thresholds for software product lines. Proceedings of the 19th International Conference on Software Product Line. (176-185).

    https://doi.org/10.1145/2791060.2791078

  • Fontana F, Ferme V and Zanoni M. Towards assessing software architecture quality by exploiting code smell relations. Proceedings of the Second International Workshop on Software Architecture and Metrics. (1-7).

    /doi/10.5555/2821327.2821329

  • Ozkaya I, Nord R, Koziolek H and Avgeriou P. Second international workshop on software architecture and metrics (SAM 2015). Proceedings of the 37th International Conference on Software Engineering - Volume 2. (999-1000).

    /doi/10.5555/2819009.2819249

  • Goldstein M and Segall I. Automatic and continuous software architecture validation. Proceedings of the 37th International Conference on Software Engineering - Volume 2. (59-68).

    /doi/10.5555/2819009.2819021

  • Fontana F, Ferme V and Zanoni M. Towards Assessing Software Architecture Quality by Exploiting Code Smell Relations. Proceedings of the 2015 IEEE/ACM 2nd International Workshop on Software Architecture and Metrics. (1-7).

    https://doi.org/10.1109/SAM.2015.8

  • Ozkaya I, Nord R, Koziolek H and Avgeriou P. (2015). Second International Workshop on Software Architecture and Metrics (SAM 2015) 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering (ICSE). 10.1109/ICSE.2015.346. 978-1-4799-1934-5. (999-1000).

    http://ieeexplore.ieee.org/document/7203147/

  • Goldstein M and Segall I. (2015). Automatic and Continuous Software Architecture Validation 2015 IEEE/ACM 37th IEEE International Conference on Software Engineering (ICSE). 10.1109/ICSE.2015.135. 978-1-4799-1934-5. (59-68).

    http://ieeexplore.ieee.org/document/7202950/

  • Santos J and de Mendonça M. Exploring decision drivers on god class detection in three controlled experiments. Proceedings of the 30th Annual ACM Symposium on Applied Computing. (1472-1479).

    https://doi.org/10.1145/2695664.2695682

  • Guimarães E, Garcia A and Cai Y. Architecture-sensitive heuristics for prioritizing critical code anomalies. Proceedings of the 14th International Conference on Modularity. (68-80).

    https://doi.org/10.1145/2724525.2724567

  • Fenske W and Schulze S. Code Smells Revisited. Proceedings of the 9th International Workshop on Variability Modelling of Software-Intensive Systems. (3-10).

    https://doi.org/10.1145/2701319.2701321

  • Barros M, Farzat F and Travassos G. (2015). Learning from optimization: A case study with Apache Ant. Information and Software Technology. 10.1016/j.infsof.2014.07.015. 57. (684-704). Online publication date: 1-Jan-2015.

    https://linkinghub.elsevier.com/retrieve/pii/S0950584914001839

  • Nord R, Ozkaya I, Koziolek H and Avgeriou P. (2014). Quantifying software architecture quality report on the first international workshop on software architecture metrics. ACM SIGSOFT Software Engineering Notes. 39:5. (32-34). Online publication date: 17-Sep-2014.

    https://doi.org/10.1145/2659118.2659140

  • Oizumi W, Garcia A, Colanzi T, Ferreira M and Staa A. When Code-Anomaly Agglomerations Represent Architectural Problems? An Exploratory Study. Proceedings of the 2014 Ninth International Conference on Availability, Reliability and Security. (91-100).

    https://doi.org/10.1109/SBES.2014.18

  • Guimaraes E, Garcia A and Cai Y. Exploring Blueprints on the Prioritization of Architecturally Relevant Code Anomalies -- A Controlled Experiment. Proceedings of the 2014 IEEE 38th Annual Computer Software and Applications Conference. (344-353).

    https://doi.org/10.1109/COMPSAC.2014.57

  • Olsson T, Toll D, Wingkvist A and Ericsson M. Evaluation of a static architectural conformance checking method in a line of computer games. Proceedings of the 10th international ACM Sigsoft conference on Quality of software architectures. (113-118).

    https://doi.org/10.1145/2602576.2602590

  • Gurgel A, Macia I, Garcia A, von Staa A, Mezini M, Eichberg M and Mitschke R. Blending and reusing rules for architectural degradation prevention. Proceedings of the 13th international conference on Modularity. (61-72).

    https://doi.org/10.1145/2577080.2577087

  • de Andrade H, Almeida E and Crnkovic I. Architectural bad smells in software product lines. Proceedings of the WICSA 2014 Companion Volume. (1-6).

    https://doi.org/10.1145/2578128.2578237

  • Ferreira M, Barbosa E, Macia I, Arcoverde R and Garcia A. Detecting architecturally-relevant code anomalies. Proceedings of the 29th Annual ACM Symposium on Applied Computing. (1158-1163).

    https://doi.org/10.1145/2554850.2555036

  • Padilha J, Pereira J, Figueiredo E, Almeida J, Garcia A and Sant’Anna C. (2014). On the Effectiveness of Concern Metrics to Detect Code Smells: An Empirical Study. Advanced Information Systems Engineering. 10.1007/978-3-319-07881-6_44. (656-671).

    http://link.springer.com/10.1007/978-3-319-07881-6_44

  • Silva A, Garcia A, Reioli E and Lucena C. Are Domain-Specific Detection Strategies for Code Anomalies Reusable? An Industry Multi-project Study. Proceedings of the 2013 27th Brazilian Symposium on Software Engineering. (79-88).

    https://doi.org/10.1109/SBES.2013.9

  • Arcoverde R, Guimarães E, Macía I, Garcia A and Cai Y. Prioritization of Code Anomalies Based on Architecture Sensitiveness. Proceedings of the 2013 27th Brazilian Symposium on Software Engineering. (69-78).

    https://doi.org/10.1109/SBES.2013.14

  • Guimaraes E, Garcia A, Figueiredo E and Cai Y. Prioritizing software anomalies with software metrics and architecture blueprints. Proceedings of the 5th International Workshop on Modeling in Software Engineering. (82-88).

    /doi/10.5555/2662737.2662756

  • De Souza L and Maia M. Do software categories impact coupling metrics?. Proceedings of the 10th Working Conference on Mining Software Repositories. (217-220).

    /doi/10.5555/2487085.2487128

  • Guimaraes E, Garcia A, Figueiredo E and Cai Y. (2013). Prioritizing software anomalies with software metrics and architecture blueprints 2013 5th International Workshop on Modeling in Software Engineering (MiSE). 10.1109/MiSE.2013.6595301. 978-1-4673-6447-8. (82-88).

    http://ieeexplore.ieee.org/document/6595301/

  • de Souza L and de Almeida Maia M. (2013). Do software categories impact coupling metrics? 2013 10th IEEE Working Conference on Mining Software Repositories (MSR 2013). 10.1109/MSR.2013.6624030. 978-1-4673-2936-1. (217-220).

    http://ieeexplore.ieee.org/document/6624030/

  • Lucena C and Nunes I. (2013). Contributions to the emergence and consolidation of Agent-oriented Software Engineering. Journal of Systems and Software. 86:4. (890-904). Online publication date: 1-Apr-2013.

    https://doi.org/10.1016/j.jss.2012.09.016

  • von Staa A, Garcia A, Cirilo E, Macia I and Arcoverde R. Supporting the identification of architecturally-relevant code anomalies. Proceedings of the 2012 IEEE International Conference on Software Maintenance (ICSM). (662-665).

    https://doi.org/10.1109/ICSM.2012.6405348

  • Arcoverde R, Macia I, Garcia A and von Staa A. Automatically detecting architecturally-relevant code anomalies. Proceedings of the Third International Workshop on Recommendation Systems for Software Engineering. (90-91).

    /doi/10.5555/2666719.2666740

  • Macia I, Arcoverde R, Garcia A, Chavez C and von Staa A. On the Relevance of Code Anomalies for Identifying Architecture Degradation Symptoms. Proceedings of the 2012 16th European Conference on Software Maintenance and Reengineering. (277-286).

    https://doi.org/10.1109/CSMR.2012.35