• Miller N and Zhang G. (2023). Additive multi-task learning models and task diagnostics. Communications in Statistics - Simulation and Computation. 10.1080/03610918.2023.2212430. 53:12. (6120-6137). Online publication date: 1-Dec-2024.

    https://www.tandfonline.com/doi/full/10.1080/03610918.2023.2212430

  • Singh Y, Biswas A, Bora A, Malakar D, Chakraborty S and Bera S. (2022). Design Perspectives of Multi‐task Deep‐Learning Models and Applications. Machine Learning Algorithms for Signal and Image Processing. 10.1002/9781119861850.ch4. (45-63). Online publication date: 13-Dec-2022.

    https://onlinelibrary.wiley.com/doi/10.1002/9781119861850.ch4

  • Zhang Y and Yang Q. A Survey on Multi-Task Learning. IEEE Transactions on Knowledge and Data Engineering. 10.1109/TKDE.2021.3070203. 34:12. (5586-5609).

    https://ieeexplore.ieee.org/document/9392366/

  • Lo S, Lu Q, Zhu L, Paik H, Xu X and Wang C. (2022). Architectural patterns for the design of federated learning systems. Journal of Systems and Software. 191:C. Online publication date: 1-Sep-2022.

    https://doi.org/10.1016/j.jss.2022.111357

  • Kong W, Khadanga S, Li C, Gupta S, Zhang M, Xu W and Bendersky M. Multi-Aspect Dense Retrieval. Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. (3178-3186).

    https://doi.org/10.1145/3534678.3539137

  • Lapucci M and Pucci D. (2022). Mixed-integer quadratic programming reformulations of multi-task learning models. Mathematics in Engineering. 10.3934/mine.2023020. 5:1. (1-16).

    http://www.aimspress.com/article/doi/10.3934/mine.2023020

  • Devezas J and Nunes S. (2021). A Review of Graph-Based Models for Entity-Oriented Search. SN Computer Science. 10.1007/s42979-021-00828-w. 2:6. Online publication date: 1-Nov-2021.

    https://link.springer.com/10.1007/s42979-021-00828-w

  • Beltzung L, Lindley A, Dinica O, Hermann N and Lindner R. (2020). Real-Time Detection of Fake-Shops through Machine Learning 2020 IEEE International Conference on Big Data (Big Data). 10.1109/BigData50022.2020.9378204. 978-1-7281-6251-5. (2254-2263).

    https://ieeexplore.ieee.org/document/9378204/

  • Li P, Li R, Da Q, Zeng A and Zhang L. Improving Multi-Scenario Learning to Rank in E-commerce by Exploiting Task Relationships in the Label Space. Proceedings of the 29th ACM International Conference on Information & Knowledge Management. (2605-2612).

    https://doi.org/10.1145/3340531.3412713

  • Raisi E and Bach S. (2020). Selecting Auxiliary Data Using Knowledge Graphs for Image Classification with Limited Labels 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). 10.1109/CVPRW50498.2020.00473. 978-1-7281-9360-1. (4026-4031).

    https://ieeexplore.ieee.org/document/9150954/

  • Rahangdale A and Raut S. (2019). Clustering-Based Transductive Semi-Supervised Learning for Learning-to-Rank. International Journal of Pattern Recognition and Artificial Intelligence. 10.1142/S0218001419510078. 33:12. (1951007). Online publication date: 1-Nov-2019.

    https://www.worldscientific.com/doi/abs/10.1142/S0218001419510078

  • Nie F, Hu Z and Li X. Calibrated Multi-Task Learning. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. (2012-2021).

    https://doi.org/10.1145/3219819.3219951

  • Raimundo M and Von Zuben F. (2018). Investigating multiobjective methods in multitask classification 2018 International Joint Conference on Neural Networks (IJCNN). 10.1109/IJCNN.2018.8489333. 978-1-5090-6014-6. (1-9).

    https://ieeexplore.ieee.org/document/8489333/

  • Song X, Wang X, Nie L, He X, Chen Z and Liu W. A Personal Privacy Preserving Framework. The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval. (295-304).

    https://doi.org/10.1145/3209978.3209995

  • Zhang Y and Yang Q. (2017). An overview of multi-task learning. National Science Review. 10.1093/nsr/nwx105. 5:1. (30-43). Online publication date: 1-Jan-2018.

    https://academic.oup.com/nsr/article/5/1/30/4101432

  • Stojkovic I, Ghalwash M and Obradovic Z. (2017). Ranking Based Multitask Learning of Scoring Functions. Machine Learning and Knowledge Discovery in Databases. 10.1007/978-3-319-71246-8_44. (721-736).

    https://link.springer.com/10.1007/978-3-319-71246-8_44

  • Li H. (2014). Learning to Rank for Information Retrieval and Natural Language Processing, Second Edition. Synthesis Lectures on Human Language Technologies. 10.2200/S00607ED2V01Y201410HLT026. 7:3. (1-121). Online publication date: 2-Oct-2014.

    http://www.morganclaypool.com/doi/abs/10.2200/S00607ED2V01Y201410HLT026

  • Laporte L, Flamary R, Canu S, Dejean S and Mothe J. Nonconvex Regularizations for Feature Selection in Ranking With Sparse SVM. IEEE Transactions on Neural Networks and Learning Systems. 10.1109/TNNLS.2013.2286696. 25:6. (1118-1130).

    http://ieeexplore.ieee.org/document/6663672/

  • Gupta M, Borole P, Hebbar P, Mehta R and Nayak N. Cross market modeling for query-entity matching. Proceedings of the 23rd International Conference on World Wide Web. (285-286).

    https://doi.org/10.1145/2567948.2577277

  • Yang H, Lyu M and King I. (2013). Efficient online learning for multitask feature selection. ACM Transactions on Knowledge Discovery from Data. 7:2. (1-27). Online publication date: 1-Jul-2013.

    https://doi.org/10.1145/2499907.2499909

  • Rezvani M and Hashemi S. (2012). Enhancing Accuracy of Topic Sensitive PageRank Using Jaccard Index and Cosine Similarity 2012 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT). 10.1109/WI-IAT.2012.166. 978-1-4673-6057-9. (620-624).

    http://ieeexplore.ieee.org/document/6511950/

  • Zhou K, Bai J, Zha H and Xue G. (2012). Leveraging Auxiliary Data for Learning to Rank. ACM Transactions on Intelligent Systems and Technology. 3:2. (1-21). Online publication date: 1-Feb-2012.

    https://doi.org/10.1145/2089094.2089113

  • Chang Y, Bai J, Zhou K, Xue G, Zha H and Zheng Z. (2012). Multi-task learning to rank for web search. Pattern Recognition Letters. 33:2. (173-181). Online publication date: 1-Jan-2012.

    https://doi.org/10.1016/j.patrec.2011.09.020

  • Parton K and Gao J. (2012). Combining Signals for Cross-Lingual Relevance Feedback. Information Retrieval Technology. 10.1007/978-3-642-35341-3_31. (356-365).

    http://link.springer.com/10.1007/978-3-642-35341-3_31

  • Pan W, Zhong E and Yang Q. (2012). Transfer Learning for Text Mining. Mining Text Data. 10.1007/978-1-4614-3223-4_7. (223-257).

    https://link.springer.com/10.1007/978-1-4614-3223-4_7

  • Li H. (2011). Learning to Rank for Information Retrieval and Natural Language Processing. Synthesis Lectures on Human Language Technologies. 10.2200/S00348ED1V01Y201104HLT012. 4:1. (1-113). Online publication date: 22-Apr-2011.

    http://www.morganclaypool.com/doi/abs/10.2200/S00348ED1V01Y201104HLT012

  • Jagarlamudi J and Bennett P. Fractional similarity. Proceedings of the 33rd European conference on Advances in information retrieval. (226-237).

    /doi/10.5555/1996889.1996919

  • Jagarlamudi J and Bennett P. Fractional Similarity. Proceedings of the 33rd European Conference on Advances in Information Retrieval - Volume 6611. (226-237).

    https://doi.org/10.1007/978-3-642-20161-5_23

  • Bai J, Diaz F, Chang Y, Zheng Z and Chen K. Cross-market model adaptation with pairwise preference data for web search ranking. Proceedings of the 23rd International Conference on Computational Linguistics: Posters. (18-26).

    /doi/10.5555/1944566.1944569