• Lula P and Zembura M. (2023). Ontology-Based Analysis of Job Offers for Medical Practitioners in Poland. Applied Artificial Intelligence: Medicine, Biology, Chemistry, Financial, Games, Engineering. 10.1007/978-3-031-29717-5_6. (90-102).

    https://link.springer.com/10.1007/978-3-031-29717-5_6

  • Kumar S and Verma T. (2022). Investigating the Character-Network Topology in Marvel Movies. Encyclopedia of Data Science and Machine Learning. 10.4018/978-1-7998-9220-5.ch151. (2514-2527).

    https://services.igi-global.com/resolvedoi/resolve.aspx?doi=10.4018/978-1-7998-9220-5.ch151

  • Roozbahani Z, Rezaeenour J, Katanforoush A and Jalaly Bidgoly A. (2021). Personalization of the collaborator recommendation system in multi‐layer scientific social networks: A case study of ResearchGate . Expert Systems. 10.1111/exsy.12932. 39:5. Online publication date: 1-Jun-2022.

    https://onlinelibrary.wiley.com/doi/10.1111/exsy.12932

  • Liu J, Deng C, Fu L, Long H, Gan X, Wang X, Chen G and Xu J. Evolving Bipartite Model Reveals the Bounded Weights in Mobile Social Networks. IEEE Transactions on Mobile Computing. 10.1109/TMC.2020.3017630. 21:3. (971-985).

    https://ieeexplore.ieee.org/document/9170904/

  • Meleu G and Melatagia P. (2021). The structure of co-publications multilayer network. Computational Social Networks. 10.1186/s40649-021-00089-w. 8:1. Online publication date: 1-Dec-2021.

    https://computationalsocialnetworks.springeropen.com/articles/10.1186/s40649-021-00089-w

  • Costa G and Ortale R. (2021). Overlapping Communities and Roles in Networks with Node Attributes: Probabilistic Graphical Modeling, Bayesian Formulation and Variational Inference. Artificial Intelligence. 10.1016/j.artint.2021.103580. (103580). Online publication date: 1-Aug-2021.

    https://linkinghub.elsevier.com/retrieve/pii/S0004370221001314

  • Bahadori S, Zare H and Moradi P. (2021). PODCD: Probabilistic overlapping dynamic community detection. Expert Systems with Applications. 10.1016/j.eswa.2021.114650. 174. (114650). Online publication date: 1-Jul-2021.

    https://linkinghub.elsevier.com/retrieve/pii/S0957417421000919

  • Fu X, Yu S, Benson A and Li X. (2019). Modelling and analysis of tagging networks in Stack Exchange communities. Journal of Complex Networks. 10.1093/comnet/cnz045. 8:5. Online publication date: 27-Feb-2021.

    https://academic.oup.com/comnet/article/doi/10.1093/comnet/cnz045/5663564

  • Dong G, Qing T, Tian L, Du R, Li J and Volchenkov D. (2021). Optimization of Crude Oil Trade Structure. Complexity. 2021. Online publication date: 1-Jan-2021.

    https://doi.org/10.1155/2021/3480546

  • Feng C, Fu L, Wu X, Gan X, Wang X, Chen G and Xu J. Evolution Matters: Content Transmission in Evolving Wireless Social Networks. IEEE Transactions on Wireless Communications. 10.1109/TWC.2020.3011035. 19:11. (7377-7391).

    https://ieeexplore.ieee.org/document/9153165/

  • Eikmeier N, Gleich D and Estrada E. (2019). Classes of preferential attachment and triangle preferential attachment models with power-law spectra. Journal of Complex Networks. 10.1093/comnet/cnz040. 8:4. Online publication date: 9-Oct-2020.

    https://academic.oup.com/comnet/article/doi/10.1093/comnet/cnz040/5602986

  • Qin Z, You Z, Jin H, Gan X and Wang J. Homophily-Driven Evolution Increases the Diffusion Accuracy in Social Networks. IEEE Transactions on Network Science and Engineering. 10.1109/TNSE.2020.2978919. 7:4. (2680-2692).

    https://ieeexplore.ieee.org/document/9026812/

  • Liu J, Fu L, Wang X, Tang F and Chen G. Joint Recommendations in Multilayer Mobile Social Networks. IEEE Transactions on Mobile Computing. 10.1109/TMC.2019.2923665. 19:10. (2358-2373).

    https://ieeexplore.ieee.org/document/8742575/

  • Costa G and Ortale R. (2019). Topic-aware joint analysis of overlapping communities and roles in social media. International Journal of Data Science and Analytics. 10.1007/s41060-019-00190-4. 9:4. (415-429). Online publication date: 1-May-2020.

    http://link.springer.com/10.1007/s41060-019-00190-4

  • Amburg I, Veldt N and Benson A. Clustering in graphs and hypergraphs with categorical edge labels. Proceedings of The Web Conference 2020. (706-717).

    https://doi.org/10.1145/3366423.3380152

  • Kłopotek R. (2020). Modeling Bimodal Social Networks Subject to the Recommendation with the Cold Start User-Item Model. Computers. 10.3390/computers9010011. 9:1. (11).

    https://www.mdpi.com/2073-431X/9/1/11

  • Ardickas D and Bloznelis M. (2020). Clustering Coefficient of a Preferred Attachment Affiliation Network. Algorithms and Models for the Web Graph. 10.1007/978-3-030-48478-1_6. (82-95).

    http://link.springer.com/10.1007/978-3-030-48478-1_6

  • Avin C, Lotker Z, Nahum Y and Peleg D. Random preferential attachment hypergraph. Proceedings of the 2019 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining. (398-405).

    https://doi.org/10.1145/3341161.3342867

  • Liu J, Zhang Q, Fu L, Wang X and Lu S. (2019). Evolving Knowledge Graphs IEEE INFOCOM 2019 - IEEE Conference on Computer Communications. 10.1109/INFOCOM.2019.8737547. 978-1-7281-0515-4. (2260-2268).

    https://ieeexplore.ieee.org/document/8737547/

  • Liu J, Fu L, Yao Y, Fu X, Wang X and Chen G. (2019). Modeling, Analysis and Validation of Evolving Networks With Hybrid Interactions. IEEE/ACM Transactions on Networking. 27:1. (126-142). Online publication date: 1-Feb-2019.

    https://doi.org/10.1109/TNET.2018.2881995

  • Akbas E and Zhao P. (2019). Graph Clustering Based on Attribute-Aware Graph Embedding. From Security to Community Detection in Social Networking Platforms. 10.1007/978-3-030-11286-8_5. (109-131).

    http://link.springer.com/10.1007/978-3-030-11286-8_5

  • Pfeiffer J and Zheleva E. (2019). Incentivized Social Sharing: Characteristics and Optimization. Influence and Behavior Analysis in Social Networks and Social Media. 10.1007/978-3-030-02592-2_8. (149-174).

    https://link.springer.com/10.1007/978-3-030-02592-2_8

  • Bringmann K, Friedrich T and Krohmer A. (2018). De-anonymization of Heterogeneous Random Graphs in Quasilinear Time. Algorithmica. 80:11. (3397-3427). Online publication date: 1-Nov-2018.

    https://doi.org/10.1007/s00453-017-0395-0

  • Qin Z, Gan X, Fu L, Di X, Tian J and Wang X. Content Delivery in Cache-Enabled Wireless Evolving Social Networks. IEEE Transactions on Wireless Communications. 10.1109/TWC.2018.2863687. 17:10. (6749-6761).

    https://ieeexplore.ieee.org/document/8444457/

  • Gorovits A, Gujral E, Papalexakis E and Bogdanov P. LARC. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. (1465-1474).

    https://doi.org/10.1145/3219819.3220118

  • Liu J, Fu L, Liu Z, Liu X and Wang X. Interest-Aware Information Diffusion in Evolving Social Networks. IEEE Transactions on Wireless Communications. 10.1109/TWC.2018.2827984. 17:7. (4593-4606).

    https://ieeexplore.ieee.org/document/8354807/

  • Liu J, Lian Q, Fu L and Wang X. (2018). Who to Connect to? Joint Recommendations in Cross-layer Social Networks IEEE INFOCOM 2018 - IEEE Conference on Computer Communications. 10.1109/INFOCOM.2018.8486247. 978-1-5386-4128-6. (1295-1303).

    https://ieeexplore.ieee.org/document/8486247/

  • Fu C, Peng C, Liu X, Yang L, Yang J and Han L. (2018). Search engine: The social relationship driving power of Internet of Things. Future Generation Computer Systems. 10.1016/j.future.2018.01.037. Online publication date: 1-Feb-2018.

    https://linkinghub.elsevier.com/retrieve/pii/S0167739X17307884

  • Raj P. M. K, Mohan A and Srinivasa K. (2018). Power Law. Practical Social Network Analysis with Python. 10.1007/978-3-319-96746-2_11. (203-232).

    http://link.springer.com/10.1007/978-3-319-96746-2_11

  • Epasto A, Lattanzi S and Paes Leme R. Ego-Splitting Framework. Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. (145-154).

    https://doi.org/10.1145/3097983.3098054

  • Liu J, Yao Y, Fu X, Fu L, Liu X and Wang X. Evolving K-Graph. Proceedings of the 18th ACM International Symposium on Mobile Ad Hoc Networking and Computing. (1-2).

    https://doi.org/10.1145/3084041.3098920

  • Fu C, Peng C and Liu X. Search engine drives the evolution of social networks. Proceedings of the ACM Turing 50th Celebration Conference - China. (1-5).

    https://doi.org/10.1145/3063955.3064807

  • Banerjee S, Jenamani M and Pratihar D. (2017). Properties of a projected network of a bipartite network 2017 International Conference on Communication and Signal Processing (ICCSP). 10.1109/ICCSP.2017.8286734. 978-1-5090-3800-8. (0143-0147).

    http://ieeexplore.ieee.org/document/8286734/

  • Shu K, Wang S, Tang J, Zafarani R and Liu H. (2017). User Identity Linkage across Online Social Networks. ACM SIGKDD Explorations Newsletter. 18:2. (5-17). Online publication date: 22-Mar-2017.

    https://doi.org/10.1145/3068777.3068781

  • Li Y, Lin L and Ho C. (2017). A social route recommender mechanism for store shopping support. Decision Support Systems. 94:C. (97-108). Online publication date: 1-Feb-2017.

    https://doi.org/10.1016/j.dss.2016.11.004

  • Costa G and Ortale R. (2017). Overlapping Communities Meet Roles and Respective Behavioral Patterns in Networks with Node Attributes. Web Information Systems Engineering – WISE 2017. 10.1007/978-3-319-68783-4_15. (215-230).

    https://link.springer.com/10.1007/978-3-319-68783-4_15

  • Wang Q and Xie J. (2016). A Two-Dimensional Genetic Algorithm for Identifying Overlapping Communities in Dynamic Networks 2016 IEEE 28th International Conference on Tools with Artificial Intelligence (ICTAI). 10.1109/ICTAI.2016.0092. 978-1-5090-4459-7. (565-569).

    http://ieeexplore.ieee.org/document/7814652/

  • Boldi P and Monti C. LlamaFur. Proceedings of the 8th ACM Conference on Web Science. (218-222).

    https://doi.org/10.1145/2908131.2908153

  • Kanade V, Levi R, Lotker Z, Mallmann-Trenn F and Mathieu C. Distance in the forest fire model how far are you from eve?. Proceedings of the twenty-seventh annual ACM-SIAM symposium on Discrete algorithms. (1602-1620).

    /doi/10.5555/2884435.2884544

  • Costa G and Ortale R. (2016). A Mean-Field Variational Bayesian Approach to Detecting Overlapping Communities with Inner Roles Using Poisson Link Generation. Advances in Intelligent Data Analysis XV. 10.1007/978-3-319-46349-0_10. (110-122).

    http://link.springer.com/10.1007/978-3-319-46349-0_10

  • Epasto A, Lattanzi S, Mirrokni V, Sebe I, Taei A and Verma S. (2015). Ego-net community mining applied to friend suggestion. Proceedings of the VLDB Endowment. 9:4. (324-335). Online publication date: 1-Dec-2015.

    https://doi.org/10.14778/2856318.2856327

  • Saha R, Geetha G and Kumar G. (2015). Probabilistic Relation between Triadic Closure and the Balance of Social Networks in Presence of Influence. International Journal of Cyber Behavior, Psychology and Learning. 5:4. (53-61). Online publication date: 1-Oct-2015.

    https://doi.org/10.4018/IJCBPL.2015100104

  • Tsourakakis C. Provably Fast Inference of Latent Features from Networks. Proceedings of the 24th International Conference on World Wide Web. (1111-1121).

    https://doi.org/10.1145/2736277.2741128

  • Yang J and Leskovec J. Overlapping Communities Explain Core–Periphery Organization of Networks. Proceedings of the IEEE. 10.1109/JPROC.2014.2364018. 102:12. (1892-1902).

    http://ieeexplore.ieee.org/document/6953058/

  • Erdős D, Gemulla R and Terzi E. (2014). Reconstructing Graphs from Neighborhood Data. ACM Transactions on Knowledge Discovery from Data. 8:4. (1-22). Online publication date: 7-Oct-2014.

    https://doi.org/10.1145/2641761

  • Sun X and Zhuge H. (2014). Modeling and navigation of social information networks in metric spaces. World Wide Web. 17:4. (649-670). Online publication date: 1-Jul-2014.

    https://doi.org/10.1007/s11280-012-0199-8

  • Yang J and Leskovec J. (2014). Structure and Overlaps of Ground-Truth Communities in Networks. ACM Transactions on Intelligent Systems and Technology. 5:2. (1-35). Online publication date: 1-Apr-2014.

    https://doi.org/10.1145/2594454

  • Pool S, Bonchi F and Leeuwen M. (2014). Description-Driven Community Detection. ACM Transactions on Intelligent Systems and Technology. 5:2. (1-28). Online publication date: 1-Apr-2014.

    https://doi.org/10.1145/2517088

  • Yang J, McAuley J and Leskovec J. Detecting cohesive and 2-mode communities indirected and undirected networks. Proceedings of the 7th ACM international conference on Web search and data mining. (323-332).

    https://doi.org/10.1145/2556195.2556243

  • Korula N and Lattanzi S. (2014). An efficient reconciliation algorithm for social networks. Proceedings of the VLDB Endowment. 7:5. (377-388). Online publication date: 1-Jan-2014.

    https://doi.org/10.14778/2732269.2732274

  • Yang J, McAuley J and Leskovec J. (2013). Community Detection in Networks with Node Attributes 2013 IEEE International Conference on Data Mining (ICDM). 10.1109/ICDM.2013.167. 978-0-7695-5108-1. (1151-1156).

    http://ieeexplore.ieee.org/document/6729613/

  • Mishra N, Romero D and Tsaparas P. Estimating the relative utility of networks for predicting user activities. Proceedings of the 22nd ACM international conference on Information & Knowledge Management. (1047-1056).

    https://doi.org/10.1145/2505515.2505586

  • Malliaros F and Vazirgiannis M. To stay or not to stay. Proceedings of the 22nd ACM international conference on Information & Knowledge Management. (469-478).

    https://doi.org/10.1145/2505515.2505561

  • Barbera M, Epasto A, Mei A, Perta V and Stefa J. Signals from the crowd. Proceedings of the 2013 conference on Internet measurement conference. (265-276).

    https://doi.org/10.1145/2504730.2504742

  • Bosagh Zadeh R, Goel A, Munagala K and Sharma A. On the precision of social and information networks. Proceedings of the first ACM conference on Online social networks. (63-74).

    https://doi.org/10.1145/2512938.2512955

  • Brown C, Noulas A, Mascolo C and Blondel V. A Place-Focused Model for Social Networks in Cities. Proceedings of the 2013 International Conference on Social Computing. (75-80).

    https://doi.org/10.1109/SocialCom.2013.18

  • Schoenebeck G. Potential networks, contagious communities, and understanding social network structure. Proceedings of the 22nd international conference on World Wide Web. (1123-1132).

    https://doi.org/10.1145/2488388.2488486

  • Shahaf D, Guestrin C and Horvitz E. (2013). "Metro maps of information" by Dafna Shahaf, Carlos Guestrin and Eric Horvitz, with Ching-man Au Yeung as coordinator. ACM SIGWEB Newsletter. 2013:Spring. (1-9). Online publication date: 1-Apr-2013.

    https://doi.org/10.1145/2451836.2451840

  • Yang J and Leskovec J. Overlapping community detection at scale. Proceedings of the sixth ACM international conference on Web search and data mining. (587-596).

    https://doi.org/10.1145/2433396.2433471

  • Wu S, Das Sarma A, Fabrikant A, Lattanzi S and Tomkins A. Arrival and departure dynamics in social networks. Proceedings of the sixth ACM international conference on Web search and data mining. (233-242).

    https://doi.org/10.1145/2433396.2433425

  • Barbieri N, Bonchi F and Manco G. Cascade-based community detection. Proceedings of the sixth ACM international conference on Web search and data mining. (33-42).

    https://doi.org/10.1145/2433396.2433403

  • Kollios G, Potamias M and Terzi E. (2013). Clustering Large Probabilistic Graphs. IEEE Transactions on Knowledge and Data Engineering. 25:2. (325-336). Online publication date: 1-Feb-2013.

    https://doi.org/10.1109/TKDE.2011.243

  • Erdos D, Gemulla R and Terzi E. Reconstructing Graphs from Neighborhood Data. Proceedings of the 2012 IEEE 12th International Conference on Data Mining. (231-240).

    https://doi.org/10.1109/ICDM.2012.154

  • Yang J and Leskovec J. Community-Affiliation Graph Model for Overlapping Network Community Detection. Proceedings of the 2012 IEEE 12th International Conference on Data Mining. (1170-1175).

    https://doi.org/10.1109/ICDM.2012.139

  • He P, Li B and Huang Y. Applying Centrality Measures to the Behavior Analysis of Developers in Open Source Software Community. Proceedings of the 2012 Second International Conference on Cloud and Green Computing. (418-423).

    https://doi.org/10.1109/CGC.2012.50

  • Boldi P and Rosa M. Arc-Community Detection via Triangular Random Walks. Proceedings of the 2012 Eighth Latin American Web Congress. (48-56).

    https://doi.org/10.1109/LA-WEB.2012.19

  • Liu X, He Q, Tian Y, Lee W, McPherson J and Han J. Event-based social networks. Proceedings of the 18th ACM SIGKDD international conference on Knowledge discovery and data mining. (1032-1040).

    https://doi.org/10.1145/2339530.2339693

  • Gugelmann L, Panagiotou K and Peter U. Random hyperbolic graphs. Proceedings of the 39th international colloquium conference on Automata, Languages, and Programming - Volume Part II. (573-585).

    https://doi.org/10.1007/978-3-642-31585-5_51

  • Arora S, Ge R, Sachdeva S and Schoenebeck G. Finding overlapping communities in social networks. Proceedings of the 13th ACM Conference on Electronic Commerce. (37-54).

    https://doi.org/10.1145/2229012.2229020

  • Kim M and Leskovec J. (2012). Multiplicative Attribute Graph Model of Real-World Networks. Internet Mathematics. 10.1080/15427951.2012.625257. 8:1-2. (113-160). Online publication date: 1-Mar-2012.

    http://www.internetmathematicsjournal.com/article/1517

  • Repka M and Paralic J. (2012). Local structure analysis of company network 2012 IEEE 10th International Symposium on Applied Machine Intelligence and Informatics (SAMI). 10.1109/SAMI.2012.6208940. 978-1-4577-0197-9. (113-117).

    http://ieeexplore.ieee.org/document/6208940/

  • Liu D, Blenn N and Van Mieghem P. (2012). Characterizing the Structure of Affliation Networks. Procedia Computer Science. 10.1016/j.procs.2012.04.061. 9. (567-576).

    http://linkinghub.elsevier.com/retrieve/pii/S1877050912001822

  • Bonato A and Tian Y. (2012). Complex Networks and Social Networks. Advances in Network Analysis and its Applications. 10.1007/978-3-642-30904-5_12. (269-286).

    http://link.springer.com/10.1007/978-3-642-30904-5_12

  • Cloteaux B. Extracting hierarchies with overlapping structure from network data. Proceedings of the Winter Simulation Conference. (3335-3343).

    /doi/10.5555/2431518.2431914

  • Cloteaux B. (2011). Extracting hierarchies with overlapping structure from network data 2011 Winter Simulation Conference - (WSC 2011). 10.1109/WSC.2011.6148029. 978-1-4577-2109-0. (3330-3338).

    http://ieeexplore.ieee.org/document/6148029/

  • Brautbar M and Kearns M. A clustering coefficient network formation game. Proceedings of the 4th international conference on Algorithmic game theory. (224-235).

    /doi/10.5555/2050805.2050833

  • Balinsky H, Balinsky A and Simske S. (2011). Document sentences as a small world 2011 IEEE International Conference on Systems, Man and Cybernetics - SMC. 10.1109/ICSMC.2011.6084065. 978-1-4577-0653-0. (2583-2588).

    http://ieeexplore.ieee.org/document/6084065/

  • Balinsky H, Balinsky A and Simske S. Automatic text summarization and small-world networks. Proceedings of the 11th ACM symposium on Document engineering. (175-184).

    https://doi.org/10.1145/2034691.2034731

  • Arasu A, Kaushik R and Li J. Data generation using declarative constraints. Proceedings of the 2011 ACM SIGMOD International Conference on Management of data. (685-696).

    https://doi.org/10.1145/1989323.1989395

  • Foudalis I, Jain K, Papadimitriou C and Sideri M. Modeling social networks through user background and behavior. Proceedings of the 8th international conference on Algorithms and models for the web graph. (85-102).

    /doi/10.5555/2022148.2022156

  • Lattanzi S, Panconesi A and Sivakumar D. Milgram-routing in social networks. Proceedings of the 20th international conference on World wide web. (725-734).

    https://doi.org/10.1145/1963405.1963507

  • Datta S, Sindhgatta R and Sengupta B. Evolution of developer collaboration on the jazz platform. Proceedings of the 4th India Software Engineering Conference. (21-30).

    https://doi.org/10.1145/1953355.1953359

  • Brautbar M and Kearns M. (2011). A Clustering Coefficient Network Formation Game. Algorithmic Game Theory. 10.1007/978-3-642-24829-0_21. (224-235).

    http://link.springer.com/10.1007/978-3-642-24829-0_21

  • Cloteaux B. Modeling affiliations in networks. Proceedings of the Winter Simulation Conference. (2958-2967).

    /doi/10.5555/2433508.2433876

  • Cloteaux B. (2010). Modeling affiliations in networks 2010 Winter Simulation Conference - (WSC 2010). 10.1109/WSC.2010.5678990. 978-1-4244-9866-6. (2958-2967).

    http://ieeexplore.ieee.org/document/5678990/

  • Datta S, Kaulgud V, Sharma V and Kumar N. A social network based study of software team dynamics. Proceedings of the 3rd India software engineering conference. (33-42).

    https://doi.org/10.1145/1730874.1730883

  • Kim M and Leskovec J. (2010). Multiplicative Attribute Graph Model of Real-World Networks. Algorithms and Models for the Web-Graph. 10.1007/978-3-642-18009-5_7. (62-73).

    http://link.springer.com/10.1007/978-3-642-18009-5_7

  • Bonato A, Janssen J and Prałat P. (2010). The Geometric Protean Model for On-Line Social Networks. Algorithms and Models for the Web-Graph. 10.1007/978-3-642-18009-5_11. (110-121).

    http://link.springer.com/10.1007/978-3-642-18009-5_11

  • Meka R, Jain P and Dhillon I. Matrix completion from power-law distributed samples. Proceedings of the 23rd International Conference on Neural Information Processing Systems. (1258-1266).

    /doi/10.5555/2984093.2984235

  • Chierichetti F, Kum R, Lattanzi S, Panconesi A and Raghavan P. (2009). Models for the Compressible Web 2009 IEEE 50th Annual Symposium on Foundations of Computer Science (FOCS). 10.1109/FOCS.2009.63. 978-1-4244-5116-6. (331-340).

    http://ieeexplore.ieee.org/document/5438618/

  • Tarbush B and Teytelboym A. Friending. SSRN Electronic Journal. 10.2139/ssrn.2456532.

    http://www.ssrn.com/abstract=2456532