• Li H, Wang J, Zhang N and Zhang W. (2024). Binary matrix factorization via collaborative neurodynamic optimization. Neural Networks. 10.1016/j.neunet.2024.106348. 176. (106348). Online publication date: 1-Aug-2024.

    https://linkinghub.elsevier.com/retrieve/pii/S0893608024002727

  • Velingker A, Vötsch M, Woodruff D and Zhou S. Fast (1 + ε)-approximation algorithms for binary matrix factorization. Proceedings of the 40th International Conference on Machine Learning. (34952-34977).

    /doi/10.5555/3618408.3619863

  • Fomin F, Panolan F, Patil A and Tanveer A. (2022). Boolean and $\mathbb{F}_{p}$-Matrix Factorization: From Theory to Practice 2022 International Joint Conference on Neural Networks (IJCNN). 10.1109/IJCNN55064.2022.9892947. 978-1-7281-8671-9. (1-8).

    https://ieeexplore.ieee.org/document/9892947/

  • Sripratak P, Punnen A and Stephen T. (2022). The Bipartite Boolean Quadric Polytope. Discrete Optimization. 44:P1. Online publication date: 1-May-2022.

    https://doi.org/10.1016/j.disopt.2021.100657

  • Punnen A. (2022). The Bipartite QUBO. The Quadratic Unconstrained Binary Optimization Problem. 10.1007/978-3-031-04520-2_10. (261-300).

    https://link.springer.com/10.1007/978-3-031-04520-2_10

  • Malik O, Ushijima-Mwesigwa H, Roy A, Mandal A, Ghosh I and Gadekallu T. (2021). Binary matrix factorization on special purpose hardware. PLOS ONE. 10.1371/journal.pone.0261250. 16:12. (e0261250).

    https://dx.plos.org/10.1371/journal.pone.0261250

  • Lu H, Chen X, Shi J, Vaidya J, Atluri V, Hong Y and Huang W. (2020). Algorithms and Applications to Weighted Rank-one Binary Matrix Factorization. ACM Transactions on Management Information Systems. 11:2. (1-33). Online publication date: 30-Jun-2020.

    https://doi.org/10.1145/3386599

  • Beckerleg M and Thompson A. (2020). A divide-and-conquer algorithm for binary matrix completion. Linear Algebra and its Applications. 10.1016/j.laa.2020.04.017. Online publication date: 1-Apr-2020.

    https://linkinghub.elsevier.com/retrieve/pii/S0024379520302111

  • Li Y, Shah D, Song D and Yu C. Nearest Neighbors for Matrix Estimation Interpreted as Blind Regression for Latent Variable Model. IEEE Transactions on Information Theory. 10.1109/TIT.2019.2950299. 66:3. (1760-1784).

    https://ieeexplore.ieee.org/document/8886428/

  • Fomin F, Golovach P, Lokshtanov D, Panolan F and Saurabh S. (2019). Approximation Schemes for Low-rank Binary Matrix Approximation Problems. ACM Transactions on Algorithms. 16:1. (1-39). Online publication date: 31-Jan-2020.

    https://doi.org/10.1145/3365653

  • Fomin F, Golovach P and Panolan F. (2020). Parameterized low-rank binary matrix approximation. Data Mining and Knowledge Discovery. 10.1007/s10618-019-00669-5.

    http://link.springer.com/10.1007/s10618-019-00669-5

  • Wu Q, Wang Y and Glover F. (2019). Advanced Tabu Search Algorithms for Bipartite Boolean Quadratic Programs Guided by Strategic Oscillation and Path Relinking. INFORMS Journal on Computing. 32:1. (74-89). Online publication date: 1-Jan-2020.

    https://doi.org/10.1287/ijoc.2018.0871

  • Ye F, Chen C, Zheng Z, Li R and Yu J. (2019). Discrete Overlapping Community Detection with Pseudo Supervision 2019 IEEE International Conference on Data Mining (ICDM). 10.1109/ICDM.2019.00081. 978-1-7281-4604-1. (708-717).

    https://ieeexplore.ieee.org/document/8970691/

  • Ban F, Bhattiprolu V, Bringmann K, Kolev P, Lee E and Woodruff D. A PTAS for ℓ-low rank approximation. Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms. (747-766).

    /doi/10.5555/3310435.3310482

  • Perros I, Papalexakis E, Park H, Vuduc R, Yan X, Defilippi C, Stewart W and Sun J. SUSTain. Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining. (2080-2089).

    https://doi.org/10.1145/3219819.3219999

  • Sukhanov S, Debes C and Zoubir A. (2018). Interpretable Clustering Ensembles Using Binary Matrix Factorization ICASSP 2018 - 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 10.1109/ICASSP.2018.8462023. 978-1-5386-4658-8. (4229-4233).

    https://ieeexplore.ieee.org/document/8462023/

  • Bresler G and Karzand M. (2018). Regret Bounds and Regimes of Optimality for User-User and Item-Item Collaborative Filtering 2018 Information Theory and Applications Workshop (ITA). 10.1109/ITA.2018.8502955. 978-1-7281-0124-8. (1-37).

    https://ieeexplore.ieee.org/document/8502955/

  • Bringmann K, Kolev P and Woodruff D. Approximation algorithms for ℓ<int>0</int>-low rank approximation. Proceedings of the 31st International Conference on Neural Information Processing Systems. (6651-6662).

    /doi/10.5555/3295222.3295410

  • Diop M, Larue A, Miron S and Brie D. (2017). A post-nonlinear mixture model approach to binary matrix factorization 2017 25th European Signal Processing Conference (EUSIPCO). 10.23919/EUSIPCO.2017.8081221. 978-0-9928626-7-1. (321-325).

    http://ieeexplore.ieee.org/document/8081221/

  • Shen Y, Mardani M and Giannakis G. Online Categorical Subspace Learning for Sketching Big Data with Misses. IEEE Transactions on Signal Processing. 10.1109/TSP.2017.2701333. 65:15. (4004-4018).

    http://ieeexplore.ieee.org/document/7919228/

  • Lee C, Li Y, Shah D and Song D. Blind regression. Proceedings of the 30th International Conference on Neural Information Processing Systems. (2163-2173).

    /doi/10.5555/3157096.3157338

  • Punnen A, Sripratak P and Karapetyan D. (2015). The bipartite unconstrained 01 quadratic programming problem. Discrete Applied Mathematics. 193:C. (1-10). Online publication date: 1-Oct-2015.

    https://doi.org/10.1016/j.dam.2015.04.004

  • Punnen A, Sripratak P and Karapetyan D. (2015). Average value of solutions for the bipartite boolean quadratic programs and rounding algorithms. Theoretical Computer Science. 565:C. (77-89). Online publication date: 2-Feb-2015.

    https://doi.org/10.1016/j.tcs.2014.11.008

  • Shi Z, Wang L and Shi L. (2014). Approximation method to rank-one binary matrix factorization 2014 IEEE International Conference on Automation Science and Engineering (CASE). 10.1109/CoASE.2014.6899417. 978-1-4799-5283-0. (800-805).

    http://ieeexplore.ieee.org/document/6899417/

  • Lu H, Vaidya J and Atluri V. (2014). An optimization framework for role mining. Journal of Computer Security. 22:1. (1-31). Online publication date: 1-Jan-2014.

    /doi/10.5555/2590636.2590637

  • Jiang P, Peng J, Heath M and Yang R. (2014). A Clustering Approach to Constrained Binary Matrix Factorization. Data Mining and Knowledge Discovery for Big Data. 10.1007/978-3-642-40837-3_9. (281-303).

    https://link.springer.com/10.1007/978-3-642-40837-3_9

  • Jiang P and Heath M. Mining Discrete Patterns via Binary Matrix Factorization. Proceedings of the 2013 IEEE 13th International Conference on Data Mining Workshops. (1129-1136).

    https://doi.org/10.1109/ICDMW.2013.46

  • Jiang P and Heath M. (2013). Pattern Discovery in High Dimensional Binary Data 2013 IEEE 13th International Conference on Data Mining Workshops (ICDMW). 10.1109/ICDMW.2013.154. 978-1-4799-3142-2. (474-481).

    http://ieeexplore.ieee.org/document/6753959/

  • Punnen A, Sripratak P and Karapetyan D. Domination analysis of algorithms for bipartite boolean quadratic programs. Proceedings of the 19th international conference on Fundamentals of Computation Theory. (271-282).

    https://doi.org/10.1007/978-3-642-40164-0_26

  • Paquet U, Thomson B and Winther O. (2012). A hierarchical model for ordinal matrix factorization. Statistics and Computing. 22:4. (945-957). Online publication date: 1-Jul-2012.

    https://doi.org/10.1007/s11222-011-9264-x

  • McFarlin D, Arbatov V, Franchetti F and Püschel M. Automatic SIMD vectorization of fast fourier transforms for the larrabee and AVX instruction sets. Proceedings of the international conference on Supercomputing. (265-274).

    https://doi.org/10.1145/1995896.1995938