• Yang N, Shi Y, Su Z, Wang X, Yan Z and Kong F. (2023). FSFP: A Fine-Grained Online Service System Performance Fault Prediction Method Based on Cross-attention 2023 30th Asia-Pacific Software Engineering Conference (APSEC). 10.1109/APSEC60848.2023.00018. 979-8-3503-4417-2. (81-90).

    https://ieeexplore.ieee.org/document/10479388/

  • Zhao G, Hassan S, Zou Y, Truong D and Corbin T. (2021). Predicting Performance Anomalies in Software Systems at Run-time. ACM Transactions on Software Engineering and Methodology. 30:3. (1-33). Online publication date: 31-Jul-2021.

    https://doi.org/10.1145/3440757

  • Dai T, Dean D, Wang P, Gu X and Lu S. Hytrace: A Hybrid Approach to Performance Bug Diagnosis in Production Cloud Infrastructures. IEEE Transactions on Parallel and Distributed Systems. 10.1109/TPDS.2018.2858800. 30:1. (107-118).

    https://ieeexplore.ieee.org/document/8417446/

  • Jindal A and Hu Y. Differential energy profiling. Proceedings of the 13th USENIX conference on Operating Systems Design and Implementation. (511-526).

    /doi/10.5555/3291168.3291206

  • Brocanelli M and Wang X. Hang doctor. Proceedings of the Thirteenth EuroSys Conference. (1-15).

    https://doi.org/10.1145/3190508.3190525

  • Gow R, Rabhi F and Venugopal S. Anomaly Detection in Complex Real World Application Systems. IEEE Transactions on Network and Service Management. 10.1109/TNSM.2017.2771403. 15:1. (83-96).

    http://ieeexplore.ieee.org/document/8101009/

  • Xu J, Wang Y, Chen P and Wang P. (2017). Lightweight and Adaptive Service API Performance Monitoring in Highly Dynamic Cloud Environment 2017 IEEE International Conference on Services Computing (SCC). 10.1109/SCC.2017.80. 978-1-5386-2005-2. (35-43).

    http://ieeexplore.ieee.org/document/8034965/

  • Huang J, Mozafari B and Wenisch T. Statistical Analysis of Latency Through Semantic Profiling. Proceedings of the Twelfth European Conference on Computer Systems. (64-79).

    https://doi.org/10.1145/3064176.3064179

  • Wienke J and Wrede S. (2016). Autonomous fault detection for performance bugs in component-based robotic systems 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 10.1109/IROS.2016.7759507. 978-1-5090-3762-9. (3291-3297).

    http://ieeexplore.ieee.org/document/7759507/

  • Chen A, Wu Y, Haeberlen A, Zhou W and Loo B. The Good, the Bad, and the Differences. Proceedings of the 2016 ACM SIGCOMM Conference. (115-128).

    https://doi.org/10.1145/2934872.2934910

  • Yu L and Lan Z. (2016). A Scalable, Non-Parametric Method for Detecting Performance Anomaly in Large Scale Computing. IEEE Transactions on Parallel and Distributed Systems. 27:7. (1902-1914). Online publication date: 1-Jul-2016.

    https://doi.org/10.1109/TPDS.2015.2475741

  • Gupta P and Stewart C. (2016). Early Work on Characterizing Performance Anomalies in Hadoop 2016 IEEE International Conference on Autonomic Computing (ICAC). 10.1109/ICAC.2016.62. 978-1-5090-1654-9. (235-236).

    http://ieeexplore.ieee.org/document/7573142/

  • Yu X, Han S, Zhang D and Xie T. (2014). Comprehending performance from real-world execution traces. ACM SIGARCH Computer Architecture News. 42:1. (193-206). Online publication date: 5-Apr-2014.

    https://doi.org/10.1145/2654822.2541968

  • Yu X, Han S, Zhang D and Xie T. (2014). Comprehending performance from real-world execution traces. ACM SIGPLAN Notices. 49:4. (193-206). Online publication date: 5-Apr-2014.

    https://doi.org/10.1145/2644865.2541968

  • Yu X, Han S, Zhang D and Xie T. Comprehending performance from real-world execution traces. Proceedings of the 19th international conference on Architectural support for programming languages and operating systems. (193-206).

    https://doi.org/10.1145/2541940.2541968

  • Wang C, Kavulya S, Tan J, Hu L, Kutare M, Kasick M, Schwan K, Narasimhan P and Gandhi R. (2013). Performance troubleshooting in data centers. ACM SIGOPS Operating Systems Review. 47:3. (50-62). Online publication date: 26-Nov-2013.

    https://doi.org/10.1145/2553070.2553079

  • Gow R, Venugopal S and Ray P. "The Tail Wags the Dog". Proceedings of the 2013 IEEE 21st International Symposium on Modelling, Analysis & Simulation of Computer and Telecommunication Systems. (355-359).

    https://doi.org/10.1109/MASCOTS.2013.51

  • Dean D, Nguyen H and Gu X. UBL. Proceedings of the 9th international conference on Autonomic computing. (191-200).

    https://doi.org/10.1145/2371536.2371572

  • Zhang X, Zhong R, Dwarkadas S and Shen K. A Flexible Framework for Throttling-Enabled Multicore Management (TEMM). Proceedings of the 2012 41st International Conference on Parallel Processing. (389-398).

    https://doi.org/10.1109/ICPP.2012.8

  • Jin G, Song L, Shi X, Scherpelz J and Lu S. (2012). Understanding and detecting real-world performance bugs. ACM SIGPLAN Notices. 47:6. (77-88). Online publication date: 6-Aug-2012.

    https://doi.org/10.1145/2345156.2254075

  • Tan Y, Nguyen H, Shen Z, Gu X, Venkatramani C and Rajan D. PREPARE. Proceedings of the 2012 IEEE 32nd International Conference on Distributed Computing Systems. (285-294).

    https://doi.org/10.1109/ICDCS.2012.65

  • Jin G, Song L, Shi X, Scherpelz J and Lu S. Understanding and detecting real-world performance bugs. Proceedings of the 33rd ACM SIGPLAN Conference on Programming Language Design and Implementation. (77-88).

    https://doi.org/10.1145/2254064.2254075

  • Westermann D. A generic methodology to derive domain-specific performance feedback for developers. Proceedings of the 34th International Conference on Software Engineering. (1527-1530).

    /doi/10.5555/2337223.2337474

  • Westermann D. (2012). A generic methodology to derive domain-specific performance feedback for developers 2012 34th International Conference on Software Engineering (ICSE 2012). 10.1109/ICSE.2012.6227045. 978-1-4673-1066-6. (1527-1530).

    http://ieeexplore.ieee.org/document/6227045/

  • Park S and Shen K. FIOS. Proceedings of the 10th USENIX conference on File and Storage Technologies. (13-13).

    /doi/10.5555/2208461.2208474

  • Song H, Ge Z, Mahimkar A, Wang J, Yates J, Zhang Y, Basso A and Chen M. Q-score. Proceedings of the 2011 ACM SIGCOMM conference on Internet measurement conference. (195-208).

    https://doi.org/10.1145/2068816.2068836

  • Stewart C, Shen K, Iyengar A and Yin J. EntomoModel. Proceedings of the 2010 IEEE International Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems. (3-13).

    https://doi.org/10.1109/MASCOTS.2010.10

  • Tan Y, Gu X and Wang H. Adaptive system anomaly prediction for large-scale hosting infrastructures. Proceedings of the 29th ACM SIGACT-SIGOPS symposium on Principles of distributed computing. (173-182).

    https://doi.org/10.1145/1835698.1835741

  • Li X, Huang M, Shen K and Chu L. A realistic evaluation of memory hardware errors and software system susceptibility. Proceedings of the 2010 USENIX conference on USENIX annual technical conference. (6-6).

    /doi/10.5555/1855840.1855846

  • Kang H, Chen H and Jiang G. PeerWatch. Proceedings of the 7th international conference on Autonomic computing. (119-128).

    https://doi.org/10.1145/1809049.1809070

  • Shen K. Request behavior variations. Proceedings of the fifteenth International Conference on Architectural support for programming languages and operating systems. (103-116).

    https://doi.org/10.1145/1736020.1736034

  • Shen K. (2010). Request behavior variations. ACM SIGPLAN Notices. 45:3. (103-116). Online publication date: 5-Mar-2010.

    https://doi.org/10.1145/1735971.1736034

  • Shen K. (2010). Request behavior variations. ACM SIGARCH Computer Architecture News. 38:1. (103-116). Online publication date: 5-Mar-2010.

    https://doi.org/10.1145/1735970.1736034

  • Zhao G, Hassan S, Zou Y, Truong D and Corbin T. (2021). Predicting Performance Anomalies in Software Systems at Run-time. ACM Transactions on Software Engineering and Methodology. 30:3. (1-33). Online publication date: 1-May-2021.

    https://doi.org/10.1145/3440757