• Lougiakis C, Mandilaras T, Katifori A, Ganias G, Ioannidis I and Roussou M. Effects of Different Tracker-driven Direction Sources on Continuous Artificial Locomotion in VR. Proceedings of the 30th ACM Symposium on Virtual Reality Software and Technology. (1-10).

    https://doi.org/10.1145/3641825.3687735

  • Bampouni E, Ahmad A, Xi N, Legaki N and Hamari J. Effects of Immersion and Embodiment on Memory in Virtual Reality. Proceedings of the 27th International Academic Mindtrek Conference. (58-67).

    https://doi.org/10.1145/3681716.3681724

  • Lee J, Hwang S, Kim K and Kim S. (2024). Evaluation of visual, auditory, and olfactory stimulus-based attractors for intermittent reorientation in virtual reality locomotion. Virtual Reality. 28:2. Online publication date: 23-Apr-2024.

    https://doi.org/10.1007/s10055-024-00997-y

  • Li H and Fan L. (2023). A Segmented Redirection Mapping Method for Roadmaps of Large Constrained Virtual Environments. IEEE Transactions on Visualization and Computer Graphics. 29:12. (5308-5324). Online publication date: 1-Dec-2023.

    https://doi.org/10.1109/TVCG.2022.3207004

  • Fan L, Li H and Shi M. (2022). Redirected Walking for Exploring Immersive Virtual Spaces With HMD: A Comprehensive Review and Recent Advances. IEEE Transactions on Visualization and Computer Graphics. 29:10. (4104-4123). Online publication date: 1-Oct-2023.

    https://doi.org/10.1109/TVCG.2022.3179269

  • Mason A, Padilla A, Peer A, Toepfer M, Ponto K and Pickett K. (2023). The role of the visual environment on characteristics of over-ground locomotion in natural and virtual environments. International Journal of Human-Computer Studies. 169:C. Online publication date: 1-Jan-2023.

    https://doi.org/10.1016/j.ijhcs.2022.102929

  • Li Y, Steinicke F and Wang M. (2022). A Comprehensive Review of Redirected Walking Techniques: Taxonomy, Methods, and Future Directions. Journal of Computer Science and Technology. 37:3. (561-583). Online publication date: 1-Jun-2022.

    https://doi.org/10.1007/s11390-022-2266-7

  • Yang C. (2022). Motion control of virtual reality based on an inertia-based sensing mechanism and a novel approach to redirected walking. Virtual Reality. 26:2. (479-500). Online publication date: 1-Jun-2022.

    https://doi.org/10.1007/s10055-021-00581-8

  • Nguyen A, Wüest P and Kunz A. Human Following Behavior In Virtual Reality. Proceedings of the 26th ACM Symposium on Virtual Reality Software and Technology. (1-3).

    https://doi.org/10.1145/3385956.3422099

  • Amemiya T, Kitazaki M and Ikei Y. (2020). Pseudo-Sensation of Walking Generated by Passive Whole-Body Motions in Heave and Yaw Directions. IEEE Transactions on Haptics. 13:1. (80-86). Online publication date: 1-Jan-2020.

    https://doi.org/10.1109/TOH.2020.2965937

  • Cardoso J and Perrotta A. (2019). A survey of real locomotion techniques for immersive virtual reality applications on head-mounted displays. Computers and Graphics. 85:C. (55-73). Online publication date: 1-Dec-2019.

    https://doi.org/10.1016/j.cag.2019.09.005

  • Dong Z, Fu X, Yang Z and Liu L. (2019). Redirected Smooth Mappings for Multiuser Real Walking in Virtual Reality. ACM Transactions on Graphics. 38:5. (1-17). Online publication date: 31-Oct-2019.

    https://doi.org/10.1145/3345554

  • Paris R, Klag J, Rajan P, Buck L, McNamara T and Bodenheimer B. How Video Game Locomotion Methods Affect Navigation in Virtual Environments. ACM Symposium on Applied Perception 2019. (1-7).

    https://doi.org/10.1145/3343036.3343131

  • Shimizu K, Yem V, Yamaoka K, Sueta G, Amemiya T, Kitazaki M and Ikei Y. Rendering of Virtual Walking Sensation by a Vestibular Display. Human Interface and the Management of Information. Information in Intelligent Systems. (36-46).

    https://doi.org/10.1007/978-3-030-22649-7_4

  • Liang H, Lu F, Shi Y, Nanjappan V and Papangelis K. (2019). Evaluating the effects of collaboration and competition in navigation tasks and spatial knowledge acquisition within virtual reality environments. Future Generation Computer Systems. 95:C. (855-866). Online publication date: 1-Jun-2019.

    https://doi.org/10.1016/j.future.2018.02.029

  • Wozniak P, Capobianco A, Javahiraly N and Curticapean D. Towards unobtrusive obstacle detection and notification for VR. Proceedings of the 24th ACM Symposium on Virtual Reality Software and Technology. (1-2).

    https://doi.org/10.1145/3281505.3283391

  • Wozniak P, Capobianco A, Javahiraly N and Curticapean D. Towards Unobtrusive Obstacle Detection and Notification for Virtual Reality Using Metaphors. Proceedings of the 2018 ACM Symposium on Spatial User Interaction. (188-188).

    https://doi.org/10.1145/3267782.3274682

  • Liu J, Parekh H, Al-Zayer M and Folmer E. Increasing Walking in VR using Redirected Teleportation. Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology. (521-529).

    https://doi.org/10.1145/3242587.3242601

  • Wilson G, McGill M, Jamieson M, Williamson J and Brewster S. Object Manipulation in Virtual Reality Under Increasing Levels of Translational Gain. Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. (1-13).

    https://doi.org/10.1145/3173574.3173673

  • Dong Z, Fu X, Zhang C, Wu K and Liu L. (2017). Smooth assembled mappings for large-scale real walking. ACM Transactions on Graphics. 36:6. (1-13). Online publication date: 31-Dec-2018.

    https://doi.org/10.1145/3130800.3130893

  • Hirt C, Zank M and Kunz A. Real-time wall outline extraction for redirected walking. Proceedings of the 23rd ACM Symposium on Virtual Reality Software and Technology. (1-2).

    https://doi.org/10.1145/3139131.3143416

  • Sra M, Xu X and Maes P. GalVR. Proceedings of the 23rd ACM Symposium on Virtual Reality Software and Technology. (1-2).

    https://doi.org/10.1145/3139131.3141219

  • Saka N, Ikei Y, Amemiya T, Hirota K and Kitazaki M. Passive arm swing motion for virtual walking sensation. Proceedings of the 26th International Conference on Artificial Reality and Telexistence and the 21st Eurographics Symposium on Virtual Environments. (17-23).

    /doi/10.5555/3061323.3061328

  • Freitag S, Weyers B and Kuhlen T. (2016). Examining Rotation Gain in CAVE-like Virtual Environments. IEEE Transactions on Visualization and Computer Graphics. 22:4. (1462-1471). Online publication date: 21-Apr-2016.

    https://doi.org/10.1109/TVCG.2016.2518298

  • Turchet L. (2015). Designing presence for real locomotion in immersive virtual environments. Virtual Reality. 19:3-4. (277-290). Online publication date: 1-Nov-2015.

    https://doi.org/10.1007/s10055-015-0267-3

  • Lin Q, Rieser J and Bodenheimer B. (2015). Affordance Judgments in HMD-Based Virtual Environments. ACM Transactions on Applied Perception. 12:2. (1-21). Online publication date: 10-Apr-2015.

    https://doi.org/10.1145/2720020