• Jiang D, Dai Z, Liu Y and Zhang Z. (2024). RGMU: A High-flexibility and Low-cost Reconfigurable Galois Field Multiplication Unit Design Approach for CGRCA. ACM Transactions on Design Automation of Electronic Systems. 29:2. (1-24). Online publication date: 31-Mar-2024.

    https://doi.org/10.1145/3639820

  • Rashidi B, Sayedi S and Farashahi R. (2016). An efficient and high-speed VLSI implementation of optimal normal basis multiplication over GF(2m). Integration, the VLSI Journal. 55:C. (138-154). Online publication date: 1-Sep-2016.

    https://doi.org/10.1016/j.vlsi.2016.05.006

  • Lee W, Lee C and Ho K. (2014). A HIPAA-compliant key management scheme with revocation of authorization. Computer Methods and Programs in Biomedicine. 113:3. (809-814). Online publication date: 1-Mar-2014.

    https://doi.org/10.1016/j.cmpb.2014.01.003

  • Azarderakhsh R and Reyhani-Masoleh A. A modified low complexity digit-level Gaussian normal basis multiplier. Proceedings of the Third international conference on Arithmetic of finite fields. (25-40).

    /doi/10.5555/1893732.1893737

  • Li Y, Chen G, Chen Y and Li J. (2010). An extension of TYT inversion algorithm in polynomial basis. Information Processing Letters. 110:8-9. (300-303). Online publication date: 1-Apr-2010.

    /doi/10.5555/1752262.1752524

  • Li Y, Chen G and Li J. Fast forth power and its application in inversion computation for a special class of trinomials. Proceedings of the 2010 international conference on Computational Science and Its Applications - Volume Part II. (14-24).

    https://doi.org/10.1007/978-3-642-12165-4_2

  • Lee C. (2010). Concurrent error detection architectures for Gaussian normal basis multiplication over GF(2m). Integration, the VLSI Journal. 43:1. (113-123). Online publication date: 1-Jan-2010.

    https://doi.org/10.1016/j.vlsi.2009.07.002

  • Lin T, Truong T, Lee H and Chang H. (2009). Algebraic decoding of the (41, 21, 9) Quadratic Residue code. Information Sciences: an International Journal. 179:19. (3451-3459). Online publication date: 1-Sep-2009.

    https://doi.org/10.1016/j.ins.2009.06.002

  • Deepthi P, Nithin V and Sathidevi P. (2009). Implementation and analysis of stream ciphers based on the elliptic curves. Computers and Electrical Engineering. 35:2. (300-314). Online publication date: 1-Mar-2009.

    https://doi.org/10.1016/j.compeleceng.2008.06.006

  • Järvinen K and Skyttä J. (2008). On parallelization of high-speed processors for elliptic curve cryptography. IEEE Transactions on Very Large Scale Integration (VLSI) Systems. 16:9. (1162-1175). Online publication date: 1-Sep-2008.

    https://doi.org/10.1109/TVLSI.2008.2000728

  • Reyhani-Masoleh A. A New Bit-Serial Architecture for Field Multiplication Using Polynomial Bases. Proceeding sof the 10th international workshop on Cryptographic Hardware and Embedded Systems. (300-314).

    https://doi.org/10.1007/978-3-540-85053-3_19

  • Bac D, Binh N and Quynh N. Novel algebraic structure for cyclic codes. Proceedings of the 17th international conference on Applied algebra, algebraic algorithms and error-correcting codes. (301-310).

    /doi/10.5555/1781734.1781771

  • Järvinen K, Forsten J and Skyttä J. FPGA Design of Self-certified Signature Verification on Koblitz Curves. Proceedings of the 9th international workshop on Cryptographic Hardware and Embedded Systems. (256-271).

    https://doi.org/10.1007/978-3-540-74735-2_18

  • Namin A, Wu H and Ahmadi M. (2007). Comb Architectures for Finite Field Multiplication in F(2^m). IEEE Transactions on Computers. 56:7. (909-916). Online publication date: 1-Jul-2007.

    https://doi.org/10.1109/TC.2007.1047

  • Kim C, Kim Y, Ji S and Park I. A New Parallel Multiplier for Type II Optimal Normal Basis. Computational Intelligence and Security. (460-469).

    https://doi.org/10.1007/978-3-540-74377-4_49

  • Jing M, Chen Z, Chen J and Chen Y. (2007). Reconfigurable system for high-speed and diversified AES using FPGA. Microprocessors & Microsystems. 31:2. (94-102). Online publication date: 1-Mar-2007.

    https://doi.org/10.1016/j.micpro.2006.02.018

  • Fan H and Hasan M. (2007). A New Approach to Subquadratic Space Complexity Parallel Multipliers for Extended Binary Fields. IEEE Transactions on Computers. 56:2. (224-233). Online publication date: 1-Feb-2007.

    https://doi.org/10.1109/TC.2007.19

  • Lee C, Horng J and Jou I. (2006). Low-complexity bit-parallel multiplier over GF(2m) using dual basis representation. Journal of Computer Science and Technology. 21:6. (887-892). Online publication date: 1-Nov-2006.

    https://doi.org/10.1007/s11390-006-0887-x

  • Dimitrov V, Järvinen K, Jacobson M, Chan W and Huang Z. FPGA implementation of point multiplication on koblitz curves using kleinian integers. Proceedings of the 8th international conference on Cryptographic Hardware and Embedded Systems. (445-459).

    https://doi.org/10.1007/11894063_35

  • Reyhani-Masoleh A. (2006). Efficient Algorithms and Architectures for Field Multiplication Using Gaussian Normal Bases. IEEE Transactions on Computers. 55:1. (34-47). Online publication date: 1-Jan-2006.

    https://doi.org/10.1109/TC.2006.10

  • Cheung R, Telle N, Luk W and Cheung P. (2005). Customizable elliptic curve cryptosystems. IEEE Transactions on Very Large Scale Integration (VLSI) Systems. 13:9. (1048-1059). Online publication date: 1-Sep-2005.

    https://doi.org/10.1109/TVLSI.2005.857179

  • Granger R, Page D and Stam M. (2005). Hardware and Software Normal Basis Arithmetic for Pairing-Based Cryptography in Characteristic Three. IEEE Transactions on Computers. 54:7. (852-860). Online publication date: 1-Jul-2005.

    https://doi.org/10.1109/TC.2005.120

  • Reyhani-Masoleh A and Hasan M. (2005). Low Complexity Word-Level Sequential Normal Basis Multipliers. IEEE Transactions on Computers. 54:2. (98-110). Online publication date: 1-Feb-2005.

    https://doi.org/10.1109/TC.2005.29

  • Reyhani-Masoleh A and Hasan M. (2004). Efficient digit-serial normal basis multipliers over binary extension fields. ACM Transactions on Embedded Computing Systems. 3:3. (575-592). Online publication date: 1-Aug-2004.

    https://doi.org/10.1145/1015047.1015053

  • Gutub A and Tenca A. (2004). Efficient scalable VLSI architecture for Montgomery inversion in GF(p). Integration, the VLSI Journal. 37:2. (103-120). Online publication date: 1-May-2004.

    /doi/10.5555/1007823.1007825

  • Wu C, Wu C, Shieh M and Hwang Y. (2004). High-Speed, Low-Complexity Systolic Designs of Novel Iterative Division Algorithms in GF(2^m). IEEE Transactions on Computers. 53:3. (375-380). Online publication date: 1-Mar-2004.

    https://doi.org/10.1109/TC.2004.1261843

  • Kim N and Yoo K. (2003). Systolic architectures for inversion/division using AB2 circuits in GF(2). Integration, the VLSI Journal. 35:1. (11-24). Online publication date: 1-Jun-2003.

    https://doi.org/10.1016/S0167-9260(03)00004-X

  • Batina L, Örs S, Preneel B and Vandewalle J. (2003). Hardware architectures for public key cryptography. Integration, the VLSI Journal. 34:1-2. (1-64). Online publication date: 1-May-2003.

    https://doi.org/10.1016/S0167-9260(02)00053-6

  • Reyhani-Masoleh A and Hasan M. (2003). Efficient Multiplication Beyond Optimal Normal Bases. IEEE Transactions on Computers. 52:4. (428-439). Online publication date: 1-Apr-2003.

    https://doi.org/10.1109/TC.2003.1190584

  • Sklavos N and Koufopavlou O. (2002). Architectures and VLSI Implementations of the AES-Proposal Rijndael. IEEE Transactions on Computers. 51:12. (1454-1459). Online publication date: 1-Dec-2002.

    https://doi.org/10.1109/TC.2002.1146712

  • Wu H, Hasan M, Blake I and Gao S. (2002). Finite Field Multiplier Using Redundant Representation. IEEE Transactions on Computers. 51:11. (1306-1316). Online publication date: 1-Nov-2002.

    https://doi.org/10.1109/TC.2002.1047755

  • Wu H. (2002). Montgomery Multiplier and Squarer for a Class of Finite Fields. IEEE Transactions on Computers. 51:5. (521-529). Online publication date: 1-May-2002.

    https://doi.org/10.1109/TC.2002.1004591

  • Reyhani-Masoleh A and Hasan M. (2002). A New Construction of Massey-Omura Parallel Multiplier over GF(2^{m}). IEEE Transactions on Computers. 51:5. (511-520). Online publication date: 1-May-2002.

    https://doi.org/10.1109/TC.2002.1004590

  • Bednara M, Daldrup M, Gathen J, Shokrollahi J and Teich J. Reconfigurable Implementation of Elliptic Curve Crypto Algorithms. Proceedings of the 16th International Parallel and Distributed Processing Symposium.

    /doi/10.5555/645610.661715

  • Kim C, Oh S and Lim J. (2002). A new hardware architecture for operations In GF (2). IEEE Transactions on Computers. 51:1. (92). Online publication date: 1-Jan-2002.

    /doi/10.5555/507447.507454

  • Li H and Zhang C. (2002). Low-complexity versatile finite field multiplier in normal basis. EURASIP Journal on Advances in Signal Processing. 2002:1. (954-960). Online publication date: 1-Jan-2002.

    /doi/10.5555/1283100.1283197

  • Kim C, Oh S and Lim J. (2002). A New Hardware Architecture for Operations in GF(2m). IEEE Transactions on Computers. 51:1. (90-92). Online publication date: 1-Jan-2002.

    https://doi.org/10.1109/12.980019

  • Takagi N, Yoshiki J and Takagi K. (2001). A Fast Algorithm for Multiplicative Inversion in GF(2m) Using Normal Basis. IEEE Transactions on Computers. 50:5. (394-398). Online publication date: 1-May-2001.

    https://doi.org/10.1109/12.926155

  • Wang C and Guo J. (2000). New Systolic Arrays for C + AB2, Inversion, and Division in GF(2m). IEEE Transactions on Computers. 49:10. (1120-1125). Online publication date: 1-Oct-2000.

    https://doi.org/10.1109/12.888047

  • Gao L, Shrivastava S and Sobelman G. Elliptic Curve Scalar Multiplier Design Using FPGAs. Proceedings of the First International Workshop on Cryptographic Hardware and Embedded Systems. (257-268).

    /doi/10.5555/648252.752393

  • Wu H, Hasan M and Blake I. Highly Regular Architectures for Finite Field Computation Using Redundant Basis. Proceedings of the First International Workshop on Cryptographic Hardware and Embedded Systems. (269-279).

    /doi/10.5555/648252.752379

  • Gao L, Shrivastava S, Lee H and Sobelman G. A Compact Fast Variable Key Size Elliptic Curve Cryptosystem Coprocessor. Proceedings of the Seventh Annual IEEE Symposium on Field-Programmable Custom Computing Machines.

    /doi/10.5555/795658.795843

  • Guo J and Wang C. (1998). Systolic Array Implementation of Euclid's Algorithm for Inversion and Division in GF (2m). IEEE Transactions on Computers. 47:10. (1161-1167). Online publication date: 1-Oct-1998.

    https://doi.org/10.1109/12.729800

  • Hasan M. (1998). Double-Basis Multiplicative Inversion Over GF(2m). IEEE Transactions on Computers. 47:9. (960-970). Online publication date: 1-Sep-1998.

    https://doi.org/10.1109/12.713315

  • Drolet G. (1998). A New Representation of Elements of Finite Fields GF(2m) Yielding Small Complexity Arithmetic Circuits. IEEE Transactions on Computers. 47:9. (938-946). Online publication date: 1-Sep-1998.

    https://doi.org/10.1109/12.713313

  • Wu H and Hasan M. (1998). Low Complexity Bit-Parallel Multipliers for a Class of Finite Fields. IEEE Transactions on Computers. 47:8. (883-887). Online publication date: 1-Aug-1998.

    https://doi.org/10.1109/12.707588

  • Song L and Parhi K. (1998). Low-Energy Digit-Serial/Parallel Finite Field Multipliers. Journal of VLSI Signal Processing Systems. 19:2. (149-166). Online publication date: 1-Jul-1998.

    /doi/10.5555/293959.2813053

  • Koç Ç and Sunar B. (1998). Low-Complexity Bit-Parallel Canonical and Normal Basis Multipliers for a Class of Finite Fields. IEEE Transactions on Computers. 47:3. (353-356). Online publication date: 1-Mar-1998.

    https://doi.org/10.1109/12.660172

  • Paar C, Fleischmann P and Roelse P. (1998). Efficient Multiplier Architectures for Galois Fields GF(24n). IEEE Transactions on Computers. 47:2. (162-170). Online publication date: 1-Feb-1998.

    https://doi.org/10.1109/12.663762

  • Lu C. (1997). A Search of Minimal Key Functions for Normal Basis Multipliers. IEEE Transactions on Computers. 46:5. (588-592). Online publication date: 1-May-1997.

    https://doi.org/10.1109/12.589230

  • Huang C and Wu C. High-Speed C-Testable Systolic Array Design for Galois-Field InversionChih-Tsun Huang and Cheng-Wen Wu. Proceedings of the 1997 European conference on Design and Test.

    /doi/10.5555/787260.787684

  • Deng X, Liu H, Long J and Xiao B. (1997). Competitive Analysis of Network Load Balancing. Journal of Parallel and Distributed Computing. 40:2. (162-172). Online publication date: 1-Feb-1997.

    https://doi.org/10.1006/jpdc.1996.1257

  • Barua R and Sengupta S. Architectures for Arithmetic over GF(2^m). Proceedings of the Tenth International Conference on VLSI Design: VLSI in Multimedia Applications.

    /doi/10.5555/523974.834882

  • Paar C. (1996). A New Architecture for a Parallel Finite Field Multiplier with Low Complexity Based on Composite Fields. IEEE Transactions on Computers. 45:7. (856-861). Online publication date: 1-Jul-1996.

    https://doi.org/10.1109/12.508323

  • Fenn S, Benaissa M and Taylor D. (1996). GF(2m) Multiplication and Division Over the Dual Basis. IEEE Transactions on Computers. 45:3. (319-327). Online publication date: 1-Mar-1996.

    https://doi.org/10.1109/12.485570

  • Wei S. (1994). A Systolic Power-Sum Circuit for GF(2/sup m/). IEEE Transactions on Computers. 43:2. (226-229). Online publication date: 1-Feb-1994.

    https://doi.org/10.1109/12.262128

  • Wang C and Lin J. (1993). A Systolic Architecture for Computing Inverses and Divisions in Finite Fields GF(2/sup m/). IEEE Transactions on Computers. 42:9. (1141-1146). Online publication date: 1-Sep-1993.

    https://doi.org/10.1109/12.241603

  • Brunner H, Curiger A and Hofstetter M. (1993). On Computing Multiplicative Inverses in GF(2/sup m/). IEEE Transactions on Computers. 42:8. (1010-1015). Online publication date: 1-Aug-1993.

    https://doi.org/10.1109/12.238496

  • Arazi B. (1993). Architectures for Exponentiation Over GD(2/sup n/) Adopted for Smartcard Application. IEEE Transactions on Computers. 42:4. (494-497). Online publication date: 1-Apr-1993.

    https://doi.org/10.1109/12.214694

  • von zur Gathen J and Giesbrecht M. (1990). Constructing normal bases in finite fields. Journal of Symbolic Computation. 10:6. (547-570). Online publication date: 1-Dec-1990.

    https://doi.org/10.1016/S0747-7171(08)80158-7

  • Wang C and Pei D. (1990). A VLSI Design for Computing Exponentiations in GF(2/sup m/) and its Application to Generate Pseudorandom Number Sequences. IEEE Transactions on Computers. 39:2. (258-262). Online publication date: 1-Feb-1990.

    https://doi.org/10.1109/12.45211

  • Guinier D. (1990). Multiplication of large integers by the use of modular arithmetic. ACM SIGSAC Review. 7:4. (7-20). Online publication date: 1-Jan-1990.

    https://doi.org/10.1145/382089.382682

  • Wang C. (1989). An Algorithm to Design Finite Field Multipliers Using a Self-Dual Normal Basis. IEEE Transactions on Computers. 38:10. (1457-1460). Online publication date: 1-Oct-1989.

    https://doi.org/10.1109/12.35840

  • Feng G. (1989). A VLSI Architecture for Fast Inversion in GF(2/sup m/). IEEE Transactions on Computers. 38:10. (1383-1386). Online publication date: 1-Oct-1989.

    https://doi.org/10.1109/12.35833

  • Pincin A. (1989). A New Algorithm for Multiplication in Finite Fields. IEEE Transactions on Computers. 38:7. (1045-1049). Online publication date: 1-Jul-1989.

    https://doi.org/10.1109/12.30855

  • Redinbo G. (1987). Fault-tolerant decoders for cyclic error-correcting codes. IEEE Transactions on Computers. 36:1. (47-63). Online publication date: 1-Jan-1987.

    https://doi.org/10.1109/TC.1987.5009448