• Zhang B, Gao Y, Kuang B, Yu C, Fu A and Susilo W. (2024). A Survey on Advanced Persistent Threat Detection: A Unified Framework, Challenges, and Countermeasures. ACM Computing Surveys. 57:3. (1-36). Online publication date: 31-Mar-2025.

    https://doi.org/10.1145/3700749

  • Buchta R, Gkoktsis G, Heine F and Kleiner C. (2024). Advanced Persistent Threat Attack Detection Systems: A Review of Approaches, Challenges, and Trends. Digital Threats: Research and Practice. 5:4. (1-37). Online publication date: 31-Dec-2025.

    https://doi.org/10.1145/3696014

  • Al-Mhiqani M, Alsboui T, Al-Shehari T, Abdulkareem K, Ahmad R and Mohammed M. (2024). Insider threat detection in cyber-physical systems. Computers and Electrical Engineering. 119:PA. Online publication date: 1-Oct-2024.

    https://doi.org/10.1016/j.compeleceng.2024.109489

  • Gonçalves L and Zanchettin C. (2024). Detecting abnormal logins by discovering anomalous links via graph transformers. Computers and Security. 144:C. Online publication date: 1-Sep-2024.

    https://doi.org/10.1016/j.cose.2024.103944

  • Yuan Y, Ye H, Vedula S, Kaza W and Talati N. (2023). Everest: GPU-Accelerated System for Mining Temporal Motifs. Proceedings of the VLDB Endowment. 17:2. (162-174). Online publication date: 1-Oct-2023.

    https://doi.org/10.14778/3626292.3626299

  • Jurišić M, Tomičić I and Grd P. (2023). User Behavior Analysis for Detecting Compromised User Accounts. Cybernetics and Information Technologies. 23:3. (102-113). Online publication date: 1-Sep-2023.

    https://doi.org/10.2478/cait-2023-0027

  • King I and Huang H. (2023). Euler: Detecting Network Lateral Movement via Scalable Temporal Link Prediction. ACM Transactions on Privacy and Security. 26:3. (1-36). Online publication date: 30-Aug-2023.

    https://doi.org/10.1145/3588771

  • Du L, He J, Li T, Wang Y, Lan X and Huang Y. (2023). DBWE-Corbat. Computers and Security. 129:C. Online publication date: 1-Jun-2023.

    https://doi.org/10.1016/j.cose.2023.103202

  • Mehdi Gholampour P and Verma R. Adversarial Robustness of Phishing Email Detection Models. Proceedings of the 9th ACM International Workshop on Security and Privacy Analytics. (67-76).

    https://doi.org/10.1145/3579987.3586567

  • AlSlaiman M, Salman M, Saleh M and Wang B. (2023). Enhancing false negative and positive rates for efficient insider threat detection. Computers and Security. 126:C. Online publication date: 1-Mar-2023.

    https://doi.org/10.1016/j.cose.2022.103066

  • Brezinski K, Ferens K and Rantos K. (2023). Metamorphic Malware and Obfuscation. Security and Communication Networks. 2023. Online publication date: 1-Jan-2023.

    https://doi.org/10.1155/2023/8227751

  • Li X, Li X, Jia J, Li L, Yuan J, Gao Y and Yu S. (2023). A High Accuracy and Adaptive Anomaly Detection Model With Dual-Domain Graph Convolutional Network for Insider Threat Detection. IEEE Transactions on Information Forensics and Security. 18. (1638-1652). Online publication date: 1-Jan-2023.

    https://doi.org/10.1109/TIFS.2023.3245413

  • Zheng P, Yuan S and Wu X. (2021). Using Dirichlet Marked Hawkes Processes for Insider Threat Detection. Digital Threats: Research and Practice. 3:1. (1-19). Online publication date: 31-Mar-2022.

    https://doi.org/10.1145/3457908

  • Li D, Yang L, Zhang H, Wang X, Ma L and Damaševičius R. (2022). Memory-Augmented Insider Threat Detection with Temporal-Spatial Fusion. Security and Communication Networks. 2022. Online publication date: 1-Jan-2022.

    https://doi.org/10.1155/2022/6418420

  • Anjum M, Iqbal S and Hamelin B. Analyzing the Usefulness of the DARPA OpTC Dataset in Cyber Threat Detection Research. Proceedings of the 26th ACM Symposium on Access Control Models and Technologies. (27-32).

    https://doi.org/10.1145/3450569.3463573

  • Yuan S and Wu X. (2021). Deep learning for insider threat detection. Computers and Security. 104:C. Online publication date: 1-May-2021.

    https://doi.org/10.1016/j.cose.2021.102221

  • Zhang C, Wang S, Zhan D, Yu T, Wang T, Yin M and Wang J. (2021). Detecting Insider Threat from Behavioral Logs Based on Ensemble and Self-Supervised Learning. Security and Communication Networks. 2021. Online publication date: 1-Jan-2021.

    https://doi.org/10.1155/2021/4148441

  • Paul S and Mishra S. LAC: LSTM AUTOENCODER with Community for Insider Threat Detection. Proceedings of the 4th International Conference on Big Data Research. (71-77).

    https://doi.org/10.1145/3445945.3445958

  • Shukla M and Lodha S. rProfiler -- Assessing Insider Influence on Enterprise Assets. Proceedings of the 2020 ACM SIGSAC Conference on Computer and Communications Security. (2129-2131).

    https://doi.org/10.1145/3372297.3420026

  • Homoliak I, Toffalini F, Guarnizo J, Elovici Y and Ochoa M. (2019). Insight Into Insiders and IT. ACM Computing Surveys. 52:2. (1-40). Online publication date: 31-Mar-2020.

    https://doi.org/10.1145/3303771

  • Le D, Khanchi S, Zincir-Heywood A and Heywood M. Benchmarking evolutionary computation approaches to insider threat detection. Proceedings of the Genetic and Evolutionary Computation Conference. (1286-1293).

    https://doi.org/10.1145/3205455.3205612

  • Alohaly M, Takabi H and Blanco E. A Deep Learning Approach for Extracting Attributes of ABAC Policies. Proceedings of the 23nd ACM on Symposium on Access Control Models and Technologies. (137-148).

    https://doi.org/10.1145/3205977.3205984

  • Kongsgård K, Nordbotten N, Mancini F and Engelstad P. An Internal/Insider Threat Score for Data Loss Prevention and Detection. Proceedings of the 3rd ACM on International Workshop on Security And Privacy Analytics. (11-16).

    https://doi.org/10.1145/3041008.3041011

  • Sanzgiri A and Dasgupta D. Classification of Insider Threat Detection Techniques. Proceedings of the 11th Annual Cyber and Information Security Research Conference. (1-4).

    https://doi.org/10.1145/2897795.2897799

  • Hashem Y, Takabi H, GhasemiGol M and Dantu R. Towards Insider Threat Detection Using Psychophysiological Signals. Proceedings of the 7th ACM CCS International Workshop on Managing Insider Security Threats. (71-74).

    https://doi.org/10.1145/2808783.2808792

  • Nurse J, Legg P, Buckley O, Agrafiotis I, Wright G, Whitty M, Upton D, Goldsmith M and Creese S. A Critical Reflection on the Threat from Human Insiders — Its Nature, Industry Perceptions, and Detection Approaches. Proceedings of the Second International Conference on Human Aspects of Information Security, Privacy, and Trust - Volume 8533. (270-281).

    https://doi.org/10.1007/978-3-319-07620-1_24

  • Emmott A, Das S, Dietterich T, Fern A and Wong W. Systematic construction of anomaly detection benchmarks from real data. Proceedings of the ACM SIGKDD Workshop on Outlier Detection and Description. (16-21).

    https://doi.org/10.1145/2500853.2500858

  • Senator T, Goldberg H, Memory A, Young W, Rees B, Pierce R, Huang D, Reardon M, Bader D, Chow E, Essa I, Jones J, Bettadapura V, Chau D, Green O, Kaya O, Zakrzewska A, Briscoe E, Mappus R, McColl R, Weiss L, Dietterich T, Fern A, Wong W, Das S, Emmott A, Irvine J, Lee J, Koutra D, Faloutsos C, Corkill D, Friedland L, Gentzel A and Jensen D. Detecting insider threats in a real corporate database of computer usage activity. Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining. (1393-1401).

    https://doi.org/10.1145/2487575.2488213