• Khan S and Shaheen M. (2024). WisRule. Journal of Information Science. 50:4. (874-893). Online publication date: 1-Aug-2024.

    https://doi.org/10.1177/01655515221108695

  • Berthold M, Fillbrunn A and Siebes A. (2021). Widening: using parallel resources to improve model quality. Data Mining and Knowledge Discovery. 35:4. (1258-1286). Online publication date: 1-Jul-2021.

    https://doi.org/10.1007/s10618-021-00749-5

  • Djenouri Y, Lin J, Nørvåg K, Ramampiaro H and Yu P. (2021). Exploring Decomposition for Solving Pattern Mining Problems. ACM Transactions on Management Information Systems. 12:2. (1-36). Online publication date: 30-Jun-2021.

    https://doi.org/10.1145/3439771

  • Belhadi A, Djenouri Y, Lin J and Cano A. (2020). A general-purpose distributed pattern mining system. Applied Intelligence. 50:9. (2647-2662). Online publication date: 1-Sep-2020.

    https://doi.org/10.1007/s10489-020-01664-w

  • Ghofrani J, Bozorgmehr A and Panah A. A Fast Algorithm Based on Apriori Algorithms to Explore the Set of Repetitive Items of Large Transaction Data. Proceedings of the 2nd International Conference on Compute and Data Analysis. (13-19).

    https://doi.org/10.1145/3193077.3193089

  • Kumar M and Pal A. (2017). Frequent Itemset Mining in Large Datasets a Survey. International Journal of Information Retrieval Research. 7:4. (37-49). Online publication date: 1-Oct-2017.

    https://doi.org/10.4018/IJIRR.2017100103

  • Soysal Ö, Gupta E and Donepudi H. (2016). A sparse memory allocation data structure for sequential and parallel association rule mining. The Journal of Supercomputing. 72:2. (347-370). Online publication date: 1-Feb-2016.

    https://doi.org/10.1007/s11227-015-1566-x

  • Jian L, Wang C, Liu Y, Liang S, Yi W and Shi Y. (2013). Parallel data mining techniques on Graphics Processing Unit with Compute Unified Device Architecture (CUDA). The Journal of Supercomputing. 64:3. (942-967). Online publication date: 1-Jun-2013.

    https://doi.org/10.1007/s11227-011-0672-7

  • Chung S and Luo C. (2008). Efficient mining of maximal frequent itemsets from databases on a cluster of workstations. Knowledge and Information Systems. 16:3. (359-391). Online publication date: 1-Sep-2008.

    /doi/10.5555/3227211.3227329

  • Zhang S, Wu X, Zhang C and Lu J. (2008). Computing the minimum-support for mining frequent patterns. Knowledge and Information Systems. 15:2. (233-257). Online publication date: 1-May-2008.

    /doi/10.5555/3225662.3225974

  • Holt J and Chung S. (2007). Parallel mining of association rules from text databases. The Journal of Supercomputing. 39:3. (273-299). Online publication date: 1-Mar-2007.

    https://doi.org/10.1007/s11227-006-0008-1

  • Farzanyar Z, Kangavari M and Hashemi S. An efficient distributed algorithm for mining association rules. Proceedings of the 4th international conference on Parallel and Distributed Processing and Applications. (383-393).

    https://doi.org/10.1007/11946441_38

  • Buehrer G, Chen Y, Parthasarathy S, Nguyen A, Ghoting A and Kim D. Efficient pattern mining on shared memory systems. Proceedings of the 2006 workshop on Memory system performance and correctness. (31-40).

    https://doi.org/10.1145/1178597.1178603

  • Di Fatta G and Berthold M. (2006). Dynamic Load Balancing for the Distributed Mining of Molecular Structures. IEEE Transactions on Parallel and Distributed Systems. 17:8. (773-785). Online publication date: 1-Aug-2006.

    https://doi.org/10.1109/TPDS.2006.101

  • Chi J, Koyuturk M and Grama A. (2006). CONQUEST. Algorithmica. 45:3. (377-401). Online publication date: 1-Jul-2006.

    /doi/10.5555/3118749.3118959

  • Luo C, Pereira A and Chung S. (2006). Distributed Mining of Maximal Frequent Itemsets on a Data Grid System. The Journal of Supercomputing. 37:1. (71-90). Online publication date: 1-Jul-2006.

    https://doi.org/10.1007/s11227-006-5210-7

  • Jin R and Agrawal G. An Algorithm for In-Core Frequent Itemset Mining on Streaming Data. Proceedings of the Fifth IEEE International Conference on Data Mining. (210-217).

    https://doi.org/10.1109/ICDM.2005.21

  • Wang H, Li W, Li Z and Fan L. Finding closed itemsets in data streams. Proceedings of the 9th international conference on Knowledge-Based Intelligent Information and Engineering Systems - Volume Part II. (964-971).

    https://doi.org/10.1007/11552451_133

  • Chiu S, Liao W, Choudhary A and Kandemir M. (2005). Processor-embedded distributed smart disks for I/O-intensive workloads. Journal of Parallel and Distributed Computing. 65:4. (532-551). Online publication date: 1-Apr-2005.

    https://doi.org/10.1016/j.jpdc.2004.01.006

  • Silvestri C and Orlando S. Distributed approximate mining of frequent patterns. Proceedings of the 2005 ACM symposium on Applied computing. (529-536).

    https://doi.org/10.1145/1066677.1066796

  • Jin R, Yang G and Agrawal G. (2005). Shared Memory Parallelization of Data Mining Algorithms. IEEE Transactions on Knowledge and Data Engineering. 17:1. (71-89). Online publication date: 1-Jan-2005.

    https://doi.org/10.1109/TKDE.2005.18

  • Guralnik V and Karypis G. (2004). Parallel tree-projection-based sequence mining algorithms. Parallel Computing. 30:4. (443-472). Online publication date: 1-Apr-2004.

    https://doi.org/10.1016/j.parco.2004.03.003

  • Schuster A and Wolff R. (2004). Communication-Efficient Distributed Mining of Association Rules. Data Mining and Knowledge Discovery. 8:2. (171-196). Online publication date: 1-Mar-2004.

    https://doi.org/10.1023/B:DAMI.0000015870.80026.6a

  • Wolff R and Schuster A. Association Rule Mining in Peer-to-Peer Systems. Proceedings of the Third IEEE International Conference on Data Mining.

    /doi/10.5555/951949.952182

  • Wang J, Han J and Pei J. CLOSET+. Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining. (236-245).

    https://doi.org/10.1145/956750.956779

  • El-Hajj M and Zaïane O. Inverted matrix. Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining. (109-118).

    https://doi.org/10.1145/956750.956766

  • Chiu S, Liao W and Choudhary A. Design and evaluation of distributed smart disk architecture for I/O-intensive workloads. Proceedings of the 2003 international conference on Computational science. (230-241).

    /doi/10.5555/1757599.1757627

  • Dongarra J, Foster I, Fox G, Gropp W, Kennedy K, Torczon L and White A. References. Sourcebook of parallel computing. (729-789).

    /doi/10.5555/941480.941507

  • Hu Y, Chen R and Tzeng G. (2002). Mining fuzzy association rules for classification problems. Computers and Industrial Engineering. 43:4. (735-750). Online publication date: 2-Sep-2002.

    https://doi.org/10.1016/S0360-8352(02)00136-5

  • Orlando S, Palmerini P, Perego R and Silvestri F. An efficient parallel and distributed algorithm for counting frequent sets. Proceedings of the 5th international conference on High performance computing for computational science. (421-435).

    /doi/10.5555/1766851.1766885

  • Kumar V, Joshi M, Han E, Tan P and Steinbach M. High performance data mining. Proceedings of the 5th international conference on High performance computing for computational science. (111-125).

    /doi/10.5555/1766851.1766861

  • Melab N, Cahon S, Talbi E and Duponchel L. Parallel GA-Based Wrapper Feature Selection for Spectroscopic Data Mining. Proceedings of the 16th International Parallel and Distributed Processing Symposium.

    /doi/10.5555/645610.661203

  • Agrawal G, Jin R and Li X. Compiler and middleware support for scalable data mining. Proceedings of the 14th international conference on Languages and compilers for parallel computing. (33-51).

    /doi/10.5555/1769331.1769334

  • Schuster A and Wolff R. (2001). Communication-efficient distributed mining of association rules. ACM SIGMOD Record. 30:2. (473-484). Online publication date: 1-Jun-2001.

    https://doi.org/10.1145/376284.375728

  • Schuster A and Wolff R. Communication-efficient distributed mining of association rules. Proceedings of the 2001 ACM SIGMOD international conference on Management of data. (473-484).

    https://doi.org/10.1145/375663.375728