• Ding Q, Long X, Mao S and Xi R. (2024). Second Order Unconditionally Convergent Fully Discrete Scheme for Incompressible Vector Potential MHD System. Journal of Scientific Computing. 100:1. Online publication date: 1-Jul-2024.

    https://doi.org/10.1007/s10915-024-02553-x

  • Zampa E, Busto S and Dumbser M. (2024). A divergence-free hybrid finite volume / finite element scheme for the incompressible MHD equations based on compatible finite element spaces with a posteriori limiting. Applied Numerical Mathematics. 198:C. (346-374). Online publication date: 1-Apr-2024.

    https://doi.org/10.1016/j.apnum.2024.01.014

  • Gao H, Qiu W and Sun W. (2022). New analysis of mixed FEMs for dynamical incompressible magnetohydrodynamics. Numerische Mathematik. 153:2-3. (327-358). Online publication date: 1-Mar-2023.

    https://doi.org/10.1007/s00211-022-01341-9

  • Liu M, Feng X and Wang X. (2023). Implementation of the HLL-GRP solver for multidimensional ideal MHD simulations based on finite volume method. Journal of Computational Physics. 473:C. Online publication date: 15-Jan-2023.

    https://doi.org/10.1016/j.jcp.2022.111687

  • Dao T and Nazarov M. (2022). A High-Order Residual-Based Viscosity Finite Element Method for the Ideal MHD Equations. Journal of Scientific Computing. 92:3. Online publication date: 1-Sep-2022.

    https://doi.org/10.1007/s10915-022-01918-4

  • Jin S, Tang M and Zhang X. (2022). A spatial-temporal asymptotic preserving scheme for radiation magnetohydrodynamics in the equilibrium and non-equilibrium diffusion limit. Journal of Computational Physics. 452:C. Online publication date: 1-Mar-2022.

    https://doi.org/10.1016/j.jcp.2021.110895

  • He Y, Dong X and Feng X. (2022). Uniform Stability and Convergence with Respect to of the Three Iterative Finite Element Solutions for the 3D Steady MHD Equations. Journal of Scientific Computing. 90:1. Online publication date: 1-Jan-2022.

    https://doi.org/10.1007/s10915-021-01671-0

  • Liu M, Zhang M, Li C and Shen F. (2021). A new locally divergence-free WLS-ENO scheme based on the positivity-preserving finite volume method for ideal MHD equations. Journal of Computational Physics. 447:C. Online publication date: 15-Dec-2021.

    https://doi.org/10.1016/j.jcp.2021.110694

  • Wu K and Shu C. (2021). Provably physical-constraint-preserving discontinuous Galerkin methods for multidimensional relativistic MHD equations. Numerische Mathematik. 148:3. (699-741). Online publication date: 1-Jul-2021.

    https://doi.org/10.1007/s00211-021-01209-4

  • Chandrashekar P and Kumar R. (2020). Constraint Preserving Discontinuous Galerkin Method for Ideal Compressible MHD on 2-D Cartesian Grids. Journal of Scientific Computing. 84:2. Online publication date: 3-Aug-2020.

    https://doi.org/10.1007/s10915-020-01289-8

  • Wu K and Shu C. (2019). Provably positive high-order schemes for ideal magnetohydrodynamics: analysis on general meshes. Numerische Mathematik. 142:4. (995-1047). Online publication date: 1-Aug-2019.

    https://doi.org/10.1007/s00211-019-01042-w

  • Fu L and Tang Q. (2019). High-Order Low-Dissipation Targeted ENO Schemes for Ideal Magnetohydrodynamics. Journal of Scientific Computing. 80:1. (692-716). Online publication date: 1-Jul-2019.

    https://doi.org/10.1007/s10915-019-00941-2

  • Li M, Dong H, Hu B and Xu L. (2019). Maximum-Principle-Satisfying and Positivity-Preserving High Order Central DG Methods on Unstructured Overlapping Meshes for Two-Dimensional Hyperbolic Conservation Laws. Journal of Scientific Computing. 79:3. (1361-1388). Online publication date: 1-Jun-2019.

    https://doi.org/10.1007/s10915-018-00895-x

  • Chandrashekar P. (2019). A Global Divergence Conforming DG Method for Hyperbolic Conservation Laws with Divergence Constraint. Journal of Scientific Computing. 79:1. (79-102). Online publication date: 1-Apr-2019.

    https://doi.org/10.1007/s10915-018-0841-4

  • Fernandez P, Christophe A, Terrana S, Nguyen N and Peraire J. (2018). Hybridized Discontinuous Galerkin Methods for Wave Propagation. Journal of Scientific Computing. 77:3. (1566-1604). Online publication date: 1-Dec-2018.

    https://doi.org/10.1007/s10915-018-0811-x

  • Fu P, Li F and Xu Y. (2018). Globally Divergence-Free Discontinuous Galerkin Methods for Ideal Magnetohydrodynamic Equations. Journal of Scientific Computing. 77:3. (1621-1659). Online publication date: 1-Dec-2018.

    https://doi.org/10.1007/s10915-018-0750-6

  • Wu K and Tang H. (2018). On physical-constraints-preserving schemes for special relativistic magnetohydrodynamics with a general equation of state. Zeitschrift für Angewandte Mathematik und Physik (ZAMP). 69:3. (1-24). Online publication date: 1-Jun-2018.

    https://doi.org/10.1007/s00033-018-0979-9

  • Li M, Guyenne P, Li F and Xu L. (2017). A Positivity-Preserving Well-Balanced Central Discontinuous Galerkin Method for the Nonlinear Shallow Water Equations. Journal of Scientific Computing. 71:3. (994-1034). Online publication date: 1-Jun-2017.

    https://doi.org/10.1007/s10915-016-0329-z

  • Balsara D and Kppeli R. (2017). Von Neumann stability analysis of globally divergence-free RKDG schemes for the induction equation using multidimensional Riemann solvers. Journal of Computational Physics. 336:C. (104-127). Online publication date: 1-May-2017.

    https://doi.org/10.1016/j.jcp.2017.01.056

  • Tang Q and Huang Y. (2017). Local and Parallel Finite Element Algorithm Based on Oseen-Type Iteration for the Stationary Incompressible MHD Flow. Journal of Scientific Computing. 70:1. (149-174). Online publication date: 1-Jan-2017.

    https://doi.org/10.1007/s10915-016-0246-1

  • Dong H and Li M. (2016). A reconstructed central discontinuous Galerkin-finite element method for the fully nonlinear weakly dispersive Green-Naghdi model. Applied Numerical Mathematics. 110:C. (110-127). Online publication date: 1-Dec-2016.

    https://doi.org/10.1016/j.apnum.2016.08.008

  • Christlieb A, Feng X, Seal D and Tang Q. (2016). A high-order positivity-preserving single-stage single-step method for the ideal magnetohydrodynamic equations. Journal of Computational Physics. 316:C. (218-242). Online publication date: 1-Jul-2016.

    https://doi.org/10.1016/j.jcp.2016.04.016

  • Balsara D and Dumbser M. (2015). Divergence-free MHD on unstructured meshes using high order finite volume schemes based on multidimensional Riemann solvers. Journal of Computational Physics. 299:C. (687-715). Online publication date: 15-Oct-2015.

    https://doi.org/10.1016/j.jcp.2015.07.012

  • Li M and Chen A. (2014). High order central discontinuous Galerkin-finite element methods for the Camassa-Holm equation. Applied Mathematics and Computation. 227:C. (237-245). Online publication date: 15-Jan-2014.

    /doi/10.5555/2745044.2745069

  • Li M, Guyenne P, Li F and Xu L. (2014). High order well-balanced CDG-FE methods for shallow water waves by a Green-Naghdi model. Journal of Computational Physics. 257:PA. (169-192). Online publication date: 15-Jan-2014.

    /doi/10.5555/2743142.2743663

  • Susanto A, Ivan L, De Sterck H and Groth C. (2013). High-order central ENO finite-volume scheme for ideal MHD. Journal of Computational Physics. 250:C. (141-164). Online publication date: 1-Oct-2013.

    /doi/10.5555/2743136.2743407

  • Cheng Y, Li F, Qiu J and Xu L. (2013). Positivity-preserving DG and central DG methods for ideal MHD equations. Journal of Computational Physics. 238. (255-280). Online publication date: 1-Apr-2013.

    https://doi.org/10.1016/j.jcp.2012.12.019