• Hayel R, El Hindi K, Hosny M and Alharbi R. (2024). A selective LVQ algorithm for improving instance reduction techniques and its application for text classification. Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology. 46:5-6. (11353-11366). Online publication date: 1-Jan-2024.

    https://doi.org/10.3233/JIFS-235290

  • Guibert A, Hurter C and Couellan N. LRP-GUS: A Visual Based Data Reduction Algorithm for Neural Networks. Artificial Neural Networks and Machine Learning – ICANN 2023. (337-349).

    https://doi.org/10.1007/978-3-031-44192-9_27

  • Tang L, Tian Y, Wang X and Pardalos P. (2023). A simple and reliable instance selection for fast training support vector machine. Neural Networks. 166:C. (379-395). Online publication date: 1-Sep-2023.

    https://doi.org/10.1016/j.neunet.2023.07.018

  • Zhang Z, Peng R, Ruan Y, Wu J and Luo X. (2022). ESMOTE: an overproduce-and-choose synthetic examples generation strategy based on evolutionary computation. Neural Computing and Applications. 35:9. (6891-6977). Online publication date: 1-Mar-2023.

    https://doi.org/10.1007/s00521-022-08004-8

  • Sinanaj L, Haeri H, Maddipatla S, Gao L, Pakala R, Kathiriya N, Beal C, Brennan S, Chen C and Jerath K. (2022). Granulation of Large Temporal Databases: An Allan Variance Approach. SN Computer Science. 4:1. Online publication date: 13-Dec-2022.

    https://doi.org/10.1007/s42979-022-01397-2

  • Jankowski N. A Fast and Efficient Algorithm for Filtering the Training Dataset. Neural Information Processing. (504-512).

    https://doi.org/10.1007/978-3-031-30105-6_42

  • Ougiaroglou S and Evangelidis G. WebDR: A Web Workbench for Data Reduction. Machine Learning and Knowledge Discovery in Databases. (464-467).

    https://doi.org/10.1007/978-3-662-44845-8_36

  • Zhao F, Xin Y, Zhang K, Niu X and Luo E. (2021). Representativeness-Based Instance Selection for Intrusion Detection. Security and Communication Networks. 2021. Online publication date: 1-Jan-2021.

    https://doi.org/10.1155/2021/6638134

  • Akinyelu A, Ezugwu A and Adewumi A. (2019). Ant colony optimization edge selection for support vector machine speed optimization. Neural Computing and Applications. 32:15. (11385-11417). Online publication date: 1-Aug-2020.

    https://doi.org/10.1007/s00521-019-04633-8

  • Tang T, Chen S, Zhao M, Huang W and Luo J. (2019). Very large-scale data classification based on K-means clustering and multi-kernel SVM. Soft Computing - A Fusion of Foundations, Methodologies and Applications. 23:11. (3793-3801). Online publication date: 1-Jun-2019.

    https://doi.org/10.1007/s00500-018-3041-0

  • Arnaiz-González Á, Díez-Pastor J, Rodríguez J and García-Osorio C. (2018). Study of data transformation techniques for adapting single-label prototype selection algorithms to multi-label learning. Expert Systems with Applications: An International Journal. 109:C. (114-130). Online publication date: 1-Nov-2018.

    https://doi.org/10.1016/j.eswa.2018.05.017

  • Olvera-López J, Carrasco-Ochoa J, Martínez-Trinidad J, Pinto D, Singh V, Villavicencio A, Mayr-Schlegel P and Stamatatos E. (2018). Accurate and fast prototype selection based on the notion of relevant and border prototypes. Journal of Intelligent & Fuzzy Systems: Applications in Engineering and Technology. 34:5. (2923-2934). Online publication date: 1-Jan-2018.

    https://doi.org/10.3233/JIFS-169478

  • (2018). A clustering-based hybrid approach for dual data reduction. International Journal of Intelligent Engineering Informatics. 6:5. (468-490). Online publication date: 1-Jan-2018.

    https://doi.org/10.1504/IJIEI.2018.094511

  • Si L, Yu J, Wu W, Ma J, Wu Q and Li S. (2017). RMHC-MR. Procedia Computer Science. 111:C. (252-259). Online publication date: 1-Sep-2017.

    https://doi.org/10.1016/j.procs.2017.06.061

  • Yang L, Zhu Q, Huang J and Cheng D. (2017). Adaptive edited natural neighbor algorithm. Neurocomputing. 230:C. (427-433). Online publication date: 22-Mar-2017.

    https://doi.org/10.1016/j.neucom.2016.12.040

  • Liu C, Wang W, Wang M, Lv F and Konan M. (2017). An efficient instance selection algorithm to reconstruct training set for support vector machine. Knowledge-Based Systems. 116:C. (58-73). Online publication date: 15-Jan-2017.

    https://doi.org/10.1016/j.knosys.2016.10.031

  • Akinyelu A, Adewumi A and Lorenz P. (2017). Improved Instance Selection Methods for Support Vector Machine Speed Optimization. Security and Communication Networks. 2017. Online publication date: 1-Jan-2017.

    https://doi.org/10.1155/2017/6790975

  • García-Limón M, Escalante H and Morales-Reyes A. In Defense of Online Kmeans for Prototype Generation and Instance Reduction. Advances in Artificial Intelligence - IBERAMIA 2016. (310-322).

    https://doi.org/10.1007/978-3-319-47955-2_26

  • Yang L, Zhu Q, Huang J, Cheng D and Zhang C. (2016). Natural Neighbor Reduction Algorithm for Instance-based Learning. International Journal of Cognitive Informatics and Natural Intelligence. 10:4. (59-73). Online publication date: 1-Oct-2016.

    https://doi.org/10.4018/IJCINI.2016100103

  • Arnaiz-González Á, Díez-Pastor J, Rodríguez J and García-Osorio C. (2016). Instance selection of linear complexity for big data. Knowledge-Based Systems. 107:C. (83-95). Online publication date: 1-Sep-2016.

    https://doi.org/10.1016/j.knosys.2016.05.056

  • Ougiaroglou S and Evangelidis G. (2016). Efficient editing and data abstraction by finding homogeneous clusters. Annals of Mathematics and Artificial Intelligence. 76:3-4. (327-349). Online publication date: 1-Apr-2016.

    https://doi.org/10.1007/s10472-015-9472-8

  • Ougiaroglou S and Evangelidis G. (2016). RHC. Pattern Analysis & Applications. 19:1. (93-109). Online publication date: 1-Feb-2016.

    https://doi.org/10.1007/s10044-014-0393-7

  • Jiménez-Guarneros M, Carrasco-Ochoa J and Martínez-Trinidad J. Prototype Selection for Graph Embedding Using Instance Selection. Proceedings of the 7th Mexican Conference on Pattern Recognition - Volume 9116. (84-92).

    https://doi.org/10.1007/978-3-319-19264-2_9

  • Hamidzadeh J, Monsefi R and Sadoghi Yazdi H. (2015). IRAHC. Pattern Recognition. 48:5. (1878-1889). Online publication date: 1-May-2015.

    https://doi.org/10.1016/j.patcog.2014.11.005

  • Leyva E, González A and Pérez R. (2015). Three new instance selection methods based on local sets. Pattern Recognition. 48:4. (1523-1537). Online publication date: 1-Apr-2015.

    https://doi.org/10.1016/j.patcog.2014.10.001

  • Li J and Wang Y. (2015). Prototype selection based on multi-objective optimisation and partition strategy. International Journal of Sensor Networks. 17:3. (163-176). Online publication date: 1-Mar-2015.

    https://doi.org/10.1504/IJSNET.2015.068179

  • Ougiaroglou S and Evangelidis G. (2014). Efficient $$k$$k-NN classification based on homogeneous clusters. Artificial Intelligence Review. 42:3. (491-513). Online publication date: 1-Oct-2014.

    https://doi.org/10.1007/s10462-013-9411-1

  • Lazzerini B and Volpi S. (2013). Classifier ensembles to improve the robustness to noise of bearing fault diagnosis. Pattern Analysis & Applications. 16:2. (235-251). Online publication date: 1-May-2013.

    https://doi.org/10.1007/s10044-011-0209-y

  • Hernandez-Leal P, Carrasco-Ochoa J, MartíNez-Trinidad J and Olvera-Lopez J. (2013). InstanceRank based on borders for instance selection. Pattern Recognition. 46:1. (365-375). Online publication date: 1-Jan-2013.

    https://doi.org/10.1016/j.patcog.2012.07.007

  • Ougiaroglou S and Evangelidis G. Efficient dataset size reduction by finding homogeneous clusters. Proceedings of the Fifth Balkan Conference in Informatics. (168-173).

    https://doi.org/10.1145/2371316.2371349

  • Ougiaroglou S and Evangelidis G. A simple noise-tolerant abstraction algorithm for fast k-NN classification. Proceedings of the 7th international conference on Hybrid Artificial Intelligent Systems - Volume Part II. (210-221).

    https://doi.org/10.1007/978-3-642-28931-6_20

  • Ougiaroglou S, Evangelidis G and Dervos D. An adaptive hybrid and cluster-based model for speeding up the k-NN classifier. Proceedings of the 7th international conference on Hybrid Artificial Intelligent Systems - Volume Part II. (163-175).

    https://doi.org/10.1007/978-3-642-28931-6_16