1. [1] S. Yuan, J. Wang, X. Zhao, "Real-time Bidding for Online Advertising: Measurement and Analysis," in Proceedings of the Seventh International Workshop on Data Mining for Online Advertising, 2013. [
DOI:10.1145/2501040.2501980]
2. [2] K Ren, W Zhang, Y Rong, H Zhang, Y Yu, J. Wang, "User response learning for directly optimizing campaign performance in display advertising," Proceedings of the 25th ACM International on Conference on Information and Knowledge Management, p. 679-688, 2016. [
DOI:10.1145/2983323.2983347]
3. [3] J. Xu, X. Shao, J. Ma, K. Lee, H. Qi, Q. Lu, "Lift-based bidding in ad selection," Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30, no. 1, 2016. [
DOI:10.1609/aaai.v30i1.10025]
4. [4] N. Karlsson and J. Zhang,, "Applications of feedback control in online advertising," in American Control Conference, 2013. [
DOI:10.1109/ACC.2013.6580779]
5. [5] J. Gittins, K. Glazebrook, and R. Weber, Multi-armed bandit allocation indices, John Wiley & Sons, 2011. [
DOI:10.1002/9780470980033]
6. [6] N Karlsson, "Control problems in online advertising and benefits of randomized bidding strategies," European Journal of Control, vol 6, pp. 31-49, 2016. [
DOI:10.1016/j.ejcon.2016.04.007]
7. [7] J. Guo, N. Karlsson, , "Model Reference Adaptive Control of Advertising Systems," American Control Conference, 2017. [
DOI:10.23919/ACC.2017.7963807]
8. [8] Q. Sang, N. Karlsson, J. Guo,, "Feedback Control of Event Rate in Online Advertising Campaigns," Control Engineering Practice, vol 75, p. 126-136, 2018. [
DOI:10.1016/j.conengprac.2018.03.010]
9. [9] N. Karlsson, "Adaptive estimation of small event rates," in 55th Conference on Decision and Control (CDC), 2016. [
DOI:10.1109/CDC.2016.7798831]
10. [10] W. Zhang, Y. Rong, J. Wang, T. Zhu, X. Wang, "Feedback Control of Real-Time Display Advertising," in ACM International Conference on Web Search and Data Mining, 2016. [
DOI:10.1145/2835776.2835843]
11. [11] X. Yang, Y. Li, H. Wang, D. Wu, Q. Tan, J. Xu, K. Gai, "Bid Optimization by Multivariable Control in Display Advertising," in ACM International Conference on Knowledge Discovery & Data Mining, 2019. [
DOI:10.1145/3292500.3330681]
12. [12] N. Karlsson, "Feedback Control in Programmatic Advertising: The Frontier of Optimization in Real-Time Bidding," IEEE Control Systems Magazine, vol 40, no 5, pp. 40-77, 2020. [
DOI:10.1109/MCS.2020.3005013]
13. [13] Z. Pooranian, M. Conti, H. Haddadi, R. Tafazolli, "Online Advertising Security: Issues, Taxonomy, and Future Directions," IEEE Communications Surveys & Tutorials, vol 23, no 4, pp. 2494-2524, 2021. [
DOI:10.1109/COMST.2021.3118271]
14. [14] R. Myerson, "Optimal auction design," Mathematics of operations research, vol. 6, no. 1, pp. 58-73, 1981. [
DOI:10.1287/moor.6.1.58]
15. [15] N. Karlsson and Q. Sang, "Adaptive Bid Shading Optimization of First-Price Ad Inventory," در American Control Conference, 2021. [
DOI:10.23919/ACC50511.2021.9482665]
16. [16] T. Zhou, H. He, S. Pan, N. Karlsson, B. Shetty, B. Kitts, "Zhou, T., He, H., Pan, S., Karlsson, N., Shetty, B., Kitts, B., ... & Flores, A. (2021, August). An Efficient Deep Distribution Network for Bid Shading in First-Price Auctions.," in In Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data, 2021. [
DOI:10.1145/3447548.3467167]
17. [17] N. Karlsson, "Plant gain estimation in online advertising processes," in IEEE 56th Annual Conference on Decision and Control (CDC), 2017. [
DOI:10.1109/CDC.2017.8263968]
18. [18] V. Mardanlou, N. Karlsson, J. Guo, "Statistical Plant Modeling and Simulation in Online Advertising," in American Control Conference, 2017. [
DOI:10.23919/ACC.2017.7963275]
19. [19] J. Jin, C. Song, H. Li, K. Gai, J. Wang, W. Zhang, "Real-Time Bidding with Multi-Agent Reinforcement Learning in Display Advertising," in ACM International Conference on Information and Knowledge Management, 2018. [
DOI:10.1145/3269206.3272021]
20. [20] X. Zhao, C. Gu, H. Zhang, X. Yang, X. Liu, H. Liu, J. Tang, "DEAR: Deep Reinforcement Learning for Online Advertising Impression," in AAAI Conference on Artificial Intelligence, 2020. [
DOI:10.1609/aaai.v35i1.16156]
21. [21] M. Bompaire, A. Gilotte, B. Heymann, "Causal models for real time bidding with repeated user interactions," in Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, 2021. [
DOI:10.1145/3447548.3467280]
22. [22] S. Sluis, "Everything you need to know about bid shading," https://www.adexchanger.com/, 2019.
23. [23] N. Karlsson, "Adaptive control using heisenberg bidding," in American Control Conference, 2014. [
DOI:10.1109/ACC.2014.6859107]
24. [24] J. Candy, Bayesian signal processing: classical, modern, and particle filtering methods, John Wiley & Sons, 2016. [
DOI:10.1002/9781119125495]