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ABSTRACT
Over the last several years, DBSCAN (Density-Based Spatial Clus-
tering of Applications with Noise) has been widely applied in
many areas of science due to its simplicity, robustness against
noise (outlier) and ability to discover clusters of arbitrary shapes.
However, DBSCAN algorithm requires two initial input param-
eters, namely Eps (the radius of the cluster) and MinPts (the
minimum data objects required inside the cluster) which both
have a significant influence on the clustering results. Hence, DB-
SCAN is sensitive to its input parameters and it is hard to de-
termine them a priori. This paper presents an efficient and ef-
fective hybrid clustering method, named BDE-DBSCAN, that
combines Binary Differential Evolution and DBSCAN algorithm
to simultaneously quickly and automatically specify appropriate
parameter values for Eps and MinPts. Since the Eps parame-
ter can largely degrades the efficiency of the DBSCAN algo-
rithm, the combination of an analytical way for estimating Eps
and Tournament Selection (TS) method is also employed. Exper-
imental results indicate the proposed method is precise in de-
termining appropriate input parameters of DBSCAN algorithm.
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1. INTRODUCTION
Clustering is a fundamental and popular data analysis technique. It
can be considered as an unsupervised classification to find a num-
ber of groups of similar data in a data set. Clustering techniques are
applied in many fields such as image processing, pattern recogni-
tion, machine learning, information retrieval and so on [1]. There
are a large number of clustering algorithms in the literature. They
can usually be classified into the four categories: partitioning, hier-
archical, density-based and grid-based methods [2].
DBSCAN (Density-Based Spatial Clustering of Applications with
Noise), introduced by Ester et al. [3], is a density-based clustering.
Initially, the DBSCAN clustering algorithm was proposed for clus-
tering spatial data. But it has been popular rapidly and applied in

different fields of science [4, 5, 6, 7, 8]. DBSCAN clusters data ob-
jects based on the density. Clusters are regarded as regions in which
the objects are dense, and which are separated by regions of low ob-
ject density or noise. It can discover clusters of arbitrary shape as
well as to distinguish noise [9]. DBSCAN requires two input pa-
rameters, Eps (the radius of the cluster) and MinPts (the minimum
data objects required inside the cluster). In spite of its advantages,
the original DBSCAN algorithm suffers by some drawbacks: (1) it
is not easy to determine proper values for Eps and MinPts, (2) the
computational complexity without special structure isO(n2), but if
a spatial index is used, the complexity can be reduced toO(nlogn)
[10], and (3) it fails when the border objects of two clusters are rel-
atively close [11], or when there are multi-density and connected
clusters.
There have been many efforts to mitigate the drawbacks of DB-
SCAN clustering algorithm. Jiang et al. [12] present a new hybrid
method based on partitioning-based DBSCAN and ant clustering to
improve memory usage in DBSCAN. The GMDBSCAN algorithm
[13] based on spatial index and grid technique has been proposed to
improve clustering in multi-density data sets. Xue-yong et al. [14]
propose a density-based algorithm for intrusion detection using a
method for calculating the distance and the merging process. Shah
[10] gives a new detection method to discover clusters that exist
within a cluster. Tepwankul and Maneewongwattana [15] present a
metric which specifically measures the density quality of DBSCAN
clustering in order to give better clustering quality. Edla and Jana
[16] resolve the quadratic computational complexity drawback of
DBSCAN by using the prototypes produced from a squared error
clustering method such as K-means. Tran et al. [11] present a mod-
ified version of the DBSCAN algorithm to solve instability of DB-
SCAN when detecting border objects of adjacent clusters.
There are also some research to solve difficulties in finding appro-
priate input parameters. Darong and Peng [17] combine the grid
partition technique and DBSCAN to automatically generate input
parameters. The efficiency of this method has not been evaluated
against noise and various data sets with different densities. This
method also requires input parameters for grid partitioning. Smiti
and Elouedi [18] combine Gaussian-Means (GM) and DBSCAN
algorithm to determine the input parameters in DBSCAN. How-
ever, GM provides circular cluster shape not density-based clus-
ters, and it is not strong against noise (outlier). It still needs input
parameter for the Gaussian distribution. These existing algorithms
and techniques have their own drawbacks and limitations which
leads to a bad clustering.
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Recently, many research have combined clustering algorithms with
optimization and meta-heuristic algorithms to improve the re-
sults of clustering. For instance, Simulated Annealing [19], Par-
ticle Swarm Optimization [20, 21, 22, 23], Tabu Search [24, 25],
Harmony Search [26, 27, 28], Bees algorithm [29, 30, 31], and
Ant Colony Optimization [32, 33]. However, there is no research
to solve the problem of automatically choosing input parameters
in DBSCAN algorithm. In this paper, we propose a new hybrid
DBSCAN algorithm combining with an optimization algorithm
as Binary Differential Evolution (BDE) to choose efficiency very
well suited DBSCAN input parameters (BDE-DBSCAN). Since a
slightly different setting (changing MinPts and Eps values) in DB-
SCAN may lead to total different clusters of a data set [34], an
optimization procedure would fit the requirements (finding the op-
timal combination of MinPts and Eps) for a good clustering. Be-
cause an optimization algorithm is related to an optimal choice of
process decisions that satisfy definite constraints and make an op-
timization criterion (performance or cost index) maximize or min-
imize [35, 36]. Since the Eps parameter can largely degrades the
efficiency of the DBSCAN algorithm [37], the combination of an
analytical way for estimating Eps and Tournament Selection (TS)
method is employed. The TS [38] method can create more diverse
Eps values until an appropriate combination of MinPts and Eps val-
ues be selected.
The rest of the paper is organized as follows. Section 2 describes the
DBSCAN clustering algorithm and its characteristics. In Section 3,
Differential Evolution algorithm is described. Section 4 presents
the proposed hybrid clustering algorithm BDE-DBSCAN in detail.
Experimental results and discussions are explained in Section 5.
Finally, Section 6 draws conclusions.

2. DBSCAN: A DENSITY-BASED CLUSTERING
Density-based clustering discovers clusters as regions where the
objects of the regions are dense. The clusters are separated from
each other by low-density regions [2]. Density-based algorithms
have considerable advantages over partitional and hierarchical clus-
tering algorithms. It can define clusters of arbitrary shapes as well
as effectively identify noise points. DBSCAN [3] is a density based
algorithm which discovers clusters with arbitrary shape. However,
it requires the specification of two input parameters which are hard
to guess [18]. The input parameters are the radius of the cluster
(Eps) and minimum required points inside the cluster (MinPts).
The time complexity of DBSCAN algorithm is O(n2), but it can
be reduced toO(n · logn) by building some special data structures.
The basic idea in DBSCAN algorithm is as follows [3]:
Definition 1 (Eps-neighborhood of an object): The Eps-
neighborhood of an object p, denoted by Eps(p) in a set of objects
D, is defined by
Eps(p) = {q ∈ D|distance(p, q) ≤ Eps}
Definition 2 (Directly density-reachable): An object p is directly
density-reachable from an object q wrt. Eps and MinPts, in the set
of objects D, if two conditions are satisfied:

(1) p ∈ Eps(q)
(2) |Eps(q)| ≥MinPts

Definition 3 (Core object & border object): An object is core object
if it satisfies condition 2 of Definition 2, and a border object is not a
core object itself but is density-reachable from another core object
(see Definition 4).
Definition 4 (Density-reachable): An object p is density reachable
from an object q wrt. Eps and MinPts if there is a chain of objects

p1, ..., pn, p1 = q, pn = p such that pi + 1 is directly density-
reachable from pi.
Definition 5 (Density-connected): An object p is density-connected
to an object q, if there is an object o ∈ D such that both, p and q
are density-reachable from o.
Definition 6 (Cluster): Let D be a data set of objects. A cluster
C wrt. Eps and MinPts is a non-empty subset of D satisfying the
following conditions:

(1) ∀p, q, if p ∈ C and q is density-reachable from p wrt. Eps and
MinPts, then q ∈ C (Maximality).

(2) ∀p, q ∈ C, p is density-connected to q wrt. Eps and MinPts
(Connectivity).

Definition 7 (Noise): Let C1, ..., Ck be clusters of the data set D
wrt. Eps and MinPts. Then the noise is the set of objects in the data
set D not belonging to any cluster Ci, i.e. noise={p ∈ D|∀i : p /∈
Ci}, i = 1, 2, .., k.
The steps of DBSCAN clustering algorithm is summarized as fol-
lows [6, 7]:

Function DBSCAN(Dataset D, Eps, MinPts)
1: Select an arbitrary object P in D;
2: Retrieve all objects density-reachable from P by
arbitrary/random Eps and MinPts values;
3: if P is a core object then a cluster is formed;
4: if P is a border object then no objects are density reachable
from P and DBSCAN visit the next object of the data set;
5: else assign P to noise object;
6: Continue the process (from step 1) until all of the objects
have been processed.

end
Algorithm 1: Pseudo-code of the DBSCAN

3. DIFFERENTIAL EVOLUTION ALGORITHM
Differential Evolution (DE) Algorithm is a new evolutionary com-
putational method for global optimization over continuous spaces
proposed by Storn in 1997 [39]. Differential Evolution is similar to
the overall structure of the genetic algorithm [40, 41]. DE consists
of three basic operators: mutation, crossover and selection. Muta-
tion is the most important operator in the performance of the DE
algorithm because it generates new elements for the population,
which may contain the optimum solution of the objective func-
tion [42, 43]. The DE algorithm can be summarized as follows [44]:

(1) Initialization: This step creates arbitrary initial population in n
dimension space as follows:

xi(j) = xlj + rand(0, 1) · xuj (1)

Where xi(j) denotes the jth variable of the ith individual, and
xlj and xuj are the lower and upper constraints. rand(0, 1) rep-
resents a uniformly distributed random value within [0 1].

(2) Mutation: DE randomly selects two population vectors
xp2, xp3(p2 6= p3) which must be different from each other,
then uses the difference between the individuals xp2, xp3 by
scaling factor η (usually set the value within [0.5 1] [42]) to
mutate xp1 by equation:

hi = xp1 + η(xp2 − xp3) (2)
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(a) Cluster-in-Cluster (K=3) (b) Cluster-in-Cluster (K=5) (c) Corners (K=4) (d) Crescent Full Moon (K=4)

(e) Half Kernel (K=4) (f) Pin Wheel (K=5) (g) Semi Circular (K=4) (h) Semi Circular (K=8)

(i) Outlier (K=5) (j) Aggregation (K=7) (k) Compound (K=6) (l) Pathbased (K=3)

Fig. 1. The twelve applied data sets

(3) Crossover: The new individual is generated by recombining xi
and hi as represented below:

Ui(j) =

{
hi(j), if rand(0, 1) ≤ CR or j = jrand

xi(j), otherwise

}
(3)

Where rand(0, 1) is a random number within [0 1], jrand is a
randomly chosen index to ensure that the train vector Ui does
not duplicate xi, and the CR is crossover rate.

(4) Selection: Greedy algorithm is used to select the better one
between the trial individual Ui and the parent vector xi for the
next generation using a fitness/cost function f :

xi =

{
Ui, if f(Ui) ≥ f(xi)

xi, otherwise

}
(4)

The algorithm of DE in pseudo-code is shown in algorithm 2.

4. BDE-DBSCAN: BINARY DIFFERENTIAL
EVOLUTION-BASED DBSCAN ALGORITHM

BDE-DBSCAN adopts the binary coding scheme and each individ-
ual (MinPts parameter) is represented by a bit string. In summary,
the procedure of BDE-DBSCAN can be stated as follows:
Step 1: Set control parameters and initialize the binary-coded pop-
ulations randomly;
Step 2: Calculate the best fitness function value in terms of the pu-
rity metric (see section 5.2) for each individual and keep the maxi-
mum purity as Best Solution;

Function DE
Initialize the population P by Eq. 1;

1 repeat
for i← 1 to nPop over P (i) do

Execute Mutation operator by Eq. 2;
Execute Crossover operator by Eq. 3;
Execute Selection operator by Eq. 4 using a
fitness/cost function;

end
until2 stopping condition;

end
Algorithm 2: Pseudo-code of the DE

Step 3: Generate the mutant individuals according to Eq. 2;
Step 4: Generate the new trial individual by using the crossover op-
erator in Eq. 3;
Step 5: Apply limit over real-coded individuals by Eq. 6;
Step 6: Evaluate the target individual and the corresponding trial
individual, and choose the better one based on the maximum purity
(fitness function) to survive into the next generation. Also, keep the
best one into the Best Solution;
Step 7: If the terminal conditions are met, terminate the iteration;
otherwise go to step 2.
Generally, the evolution process terminates if the maximum genera-
tion is reached or the minimum/maximum fitness value is satisfied.
The detailed process of BDE-DBSCAN is described in the algo-
rithm 3. There are some definitions over the proposed algorithm as
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Function BDE-DBSCAN(data set: input Matrix)
; /Declare DE parameters
MaxIt← Maximum iteration of DE algorithm;
nPop← Number of individuals;
nVar← The number of decision variables;
Population← [Pop1 Pop2 ... PopnPop], e.g., if MinPtsi = 26 and nVar = 8 then Popi = [00011010];

; /Define an array for storing global information
BestSol← Store the best solution (MinPts, Eps, Purity, nCluster (number of clusters), Class) in each iteration based on the maximum
fitness (purity) value (Eq. 8). Initially, BestSol =null;

; /Define the population structure
Population (i).Position← The position/point of each individual in the search space, i = 1, 2, 3, ..., nPop;
Population (i).Cost← The purity value of each individual;
Population (i).Sol← Store the solution of each individual including MinPts, Eps, Purity, nCluster and Class;
for i← 1 to nPop do

Population (i).Position = randi([0 1], nVar); generate the random initial position value (called MinPts) by a binary coding (0 or 1)
based on the number of nVar;
[Population (i).Cost Population (i).Sol] = Fitness Function(Population (i).Position);

end
; /DE Main Loop
for it← 1 to MaxIt do

for i← 1 to nPop do
Execute Mutation operator (Eq. 2) by an uniform distribution of scaling factor in Eq. 7;
Execute Crossover operator (Eq. 3);
Apply position limits over Population (i) by Eq. 6.;
Execute Selection operator (Eq. 4) by Fitness Function(Population (i).Position);

; /Update Best Solution of each population i
if Population (i).Cost > BestSol.Cost then

BestSol =Population (i);
else if (Population (i).Cost == BestSol.Cost) AND (Population (i).Sol.nCluster < BestSol.Sol.nCluster) then

BestSol =Population (i);
end
if BestSol.Cost(it)==1 then Exit from algorithm; /* purity==100% */

end
end
Function Fitness Function(MinPts)

Calculate an analytical formula of estimating neighborhood radius (Eps) for DBSCAN by Eq. 5;
Run Tournament Selection (TS) method to select an Eps value by high probability (purity value) among stored Eps;
Run standalone DBSCAN (MinPts,Eps) algorithm;
Run purity function over DBSCAN results by Eq. 8;
return MinPts, Eps, Purity and nCluster;

end
Algorithm 3: Pseudo-code of the BDE-DBSCAN algorithm

follows:
Definition 8 (Eps Parameter):
Since the Eps parameter can largely degrades the efficiency of
the DBSCAN algorithm [37], the combination of an analytical
way for estimating Eps and Tournament Selection (TS) method
is employed. The TS [38] method based on its specifications cre-
ates more diverse Eps values until an appropriate combination of
MinPts and Eps values be selected. The Eps parameter can be cal-
culated by an analytical way as [45]:

Eps = (
(
∏max(x)−min(x)
i=1

i) ∗ k ∗ γ(0.5 ∗ n+ 1)

m ∗
√
πn

)1/n (5)

Where x is data matrix by m-objects and n-variables, k is the num-
ber of objects in a neighborhood of an object, and γ interpolates

the factorial function. In each iteration, the Eps parameter is calcu-
lated and compared to the stored Eps values from previous itera-
tions through tournament selection method. At first, this initial Eps
value has high probability by default in order to be selected in the
tournament among others. It might be a very well suited selection
of Eps and MinPts.
Definition 9 (Tournament Selection):
TS [38] is widely used selection strategy in evolutionary algo-
rithms. It employs to select the Eps value from a population of
stored Eps values based on the fitness function (purity). The bet-
ter fitness value of each Eps gets more chance to be selected. The
winner of each tournament is selected for running the DBSCAN
algorithm by the generated population (MinPts).
Definition 10 (Apply limit over real-coded vectors):
Since the standard operators generate real-coded vectors not bit
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strings, a simple control is proposed to values get either 0 or 1:

Binary − coded = min(max(Real − coded, 0), 1) (6)

Definition 11 (Uniform Distributions of Scaling Factor):
For scaling factor in mutation operator, a random number with the
size of nV ar bit strings is generated from the continuous uniform
distributions with lower and upper bound specified by βmin and
βmax, respectively:

η = unifrnd(βmin, βmax, nV ar) (7)

4.1 Time Complexity
The time complexity of the BDE-DBSCAN is O((Iteration ·
Population) · (n · logn)), where Iteration is the number of Dif-
ferential Evolution iterations, Population is the number of indi-
viduals, n · logn is the time complexity of the DBSCAN algorithm,
and n is the number of data objects in the data set.

Table 1. Characteristics of data sets considered
Data set classes Size
Cluster-in-Cluster 3 1006 (250,256,500)
Cluster-in-Cluster 5 1056 (230,256,220,230,220)
Corners 4 1000 (250,250,250,250)
Crescent Full Moon 4 1200 (150,450,300,300)
Half Kernel 4 1000 (250,250,200,200)
Pin Wheel 5 1000 (200,200,200,200,200)
Semi Circular 4 1000 (250,250,250,250)
Semi Circular 8 1000 (130,120,118,132,115,135,124,126)
Outlier 5 1020 (460,20,40,460,40)
Aggregation 7 788 (45,170,102,273,34,130,34)
Compound 6 399 (50,92,38,45,158,16)
Pathbased 3 300 (110,97,93)

5. EXPERIMENTAL RESULTS AND DISCUSSIONS
5.1 Data sets
The nine 2D artificial data sets as Cluster-inside-Cluster (K=3 and
5), Corners, Crescent Full Moon, Half Kernel, Pinwheel, Semi Cir-
cular (K=4 and 8), Outlier, as well as Aggregation [46], Compound
[47], and Pathbased [48] data sets are applied. Applied data sets
consist of different unified densities such as, clusters inside clus-
ters, multi-density, connected clusters, and well-separated densi-
ties. It allows to evaluate the effectiveness and efficiency of the
BDE-DBSCAN algorithm over different shapes of data sets. These
data sets are summarized in Table 1 and depicted in Fig. 1. All the
experiments were performed on Intel Pentium (R) CPU 2.13 GHz
with 3 GB RAM on the platform Microsoft Windows 7. We have
implemented BDE-DBSCAN algorithm and artificial data sets us-
ing MATLAB software.

5.2 Performance Metric
Clustering (unsupervised classification) is usually more difficult to
evaluate than a supervised approach (e.g., counting the number of
errors or true detection) [49]. We evaluate effectiveness and accu-
racy of BDE-DBSCAN on applied data sets (Table 1) using Purity
criterion. The purity metric measures the goodness of formed clus-
ters. It is also fitness function in the proposed algorithm. The purity

Table 2. BDE-DBSCAN with Tournament Selection
Iteration Purity (%) No. of Cluster MinPts Eps

Cluster-in-Cluster (K=3)
1 49.70 1 274 0.48047
21 75.15 2 13 1.0004
30 92.05 5 7 0.73406
91 97.81 50 3 0.48056
133 99.10 60 2 0.48056
205 99.92 38 4 0.48056

Cluster-in-Cluster (K=5)
1 22.145 1 121 2.8659
4 98.356 38 3 0.45127
118 99.394 42 1 0.45127

Corners
1 53 2 760 0.89093
26 99.70 5 7 1.1763
143 100 5 2 1.1763

Crescent Full Moon
1 62.50 2 35 2.1013
35 87.50 4 10 1.5743
45 99.75 5 5 1.1132
53 99.75 4 14 1.1132
73 99.81 10 1 1.1132
82 99.92 9 4 1.1132

Half Kernel
1 25 1 150 11.4776
102 51.80 4 6 2.2955
108 94.20 58 2 1.3253
144 96.80 29 3 1.6232
279 97.60 35 2 1.6232
357 99.01 48 1 1.6232

Pin Wheel
1 40.20 3 14 0.21768
17 79.50 5 7 0.15393
96 98.10 6 5 0.13009
109 98.30 8 4 0.11636
337 99 13 1 0.11636
375 99.03 11 1 0.13009

Semi Circular (K=4)
1 78.50 9 4 1.0542
103 98.80 40 2 0.74543
124 99.60 14 3 0.91297
209 99.90 16 1 0.91297

Semi Circular (K=8)
1 26.70 2 13 1.8214
7 40.80 4 5 1.1296
20 66.70 12 3 0.8749
96 99.40 36 2 0.7144
180 99.45 30 1 0.7445
182 99.50 21 3 0.7445

Outlier
1 94.12 3 21 5.5989
19 98.43 6 7 3.2325
44 98.92 14 3 2.1162
70 99.91 7 5 2.732

Aggregation
1 82.741 6 4 1.2079
2 82.741 5 19 2.6326
84 91.497 23 2 0.85414
315 92.513 32 1 0.85414

Compound
1 84.211 4 7 1.8423
56 96.992 6 4 1.3926
89 97.74 54 3 1.45
126 98.25 56 1 1.5

Pathbased
1 37.667 2 6 2.252
9 86 7 3 1.5924
11 93.667 56 1 0.91938
33 95 22 2 1.3002
40 98.333 31 1 1.3002
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determines the frequency of the most common category/class into
each cluster:

Purity =
1

n

k∑
q=1

max
1≤j≤l

njq (8)

Where, n is the total number of samples; l is the number of cat-
egories, njq is the number of samples in cluster q that belongs to
the original class j(1 ≤ j ≤ l). A large purity (close to 100%) is
desired for a good clustering.

5.3 Analysis
The experiments on each data sets were repeated 10 times indepen-
dently to find the optimal results. Table 2 summarizes the results of
BDE-DBSCAN algorithm over twelve data sets based on any im-
provement in the purity and in the number of clusters. Some data
sets such as Cluster-inside-Cluster (K=5), Half Kernel, Semi Cir-
cular (K=8), and Pathbased have initialized with a low purity. After
several iterations they reached to the optimal results. In contrast,
some data sets such as Semi Circular (K=4), Outlier, Aggregation
and Compound have initialized with high purity, then reached to the
optimal results. In the most data sets, a same Eps value with differ-
ent MinPts values lead to the optimal accuracy (maximum purity).
For instance, in cluster-in-cluster (k=3) Eps=0.48056 by MinPts=3,
2 and 4 satisfy accuracy criterion by 97.81%, 99.1% and 99.9%, re-
spectively. In corners, Eps=1.1763 by MinPts=7 and 2 satisfy the
accuracy by 99.7% and 100%. Also, crescent full moon data set by
Eps=1.1132 and MinPts=5, 14, 1 and 4, half kernel by Eps=1.6232
and MinPts=3, 2 and 1, pin wheel by Eps=0.13009 and MinPts=5
and 1, semi-circular (k=4) by Eps=0.91297 and MinPts=3 and 1,
and semi-circular (k=8) by Eps=0.7445 and MinPts=1 and 3 per-
form optimal accuracy results. Table 3 shows BDE-DBSCAN with-
out TS. The experimental results demonstrate that BDE-DBSCAN
with TS performs better than without TS. It can be concluded that
the combination of an analytical way for estimating Eps and TS
method has considerably decreased the MinPts sensitivity to Eps
value. Hence, this procedure leads to find the optimal results.
In order to compare the quality and performance of BDE-
DBSCAN, five binary-encoded optimization algorithms, i.e., Bi-
nary Harmony Search (BHS), Binary Genetic Algorithm with
Tournament Selection (BGA-TS), Binary Genetic Algorithm with
Roulette Wheel (BGA-RW), Binary Bees Algorithm (BBees), and
Binary Particle Swarm Optimization (BPSO) with the recom-
mended parameter values were applied. The experiments on each
algorithm were repeated 10 times independently to find the optimal
parameter values. Table 4 lists the best final parameter settings of
all the algorithms. The notation of control parameters in each al-
gorithms is as follows. In Binary Harmony Search (BHS), HMS
is harmony memory size, nNew is number of the new harmonies,
HMCR is harmony memory consideration rate, PAR is pitch ad-
justment rate, FW is fret width (bandwidth), and FWdamp is fret
width damp ratio. In Genetic Algorithm with Tournament Selection
(GA-TS), pc is crossover percentage, nc is number of Offsprings
(Parents), pm denotes mutation percentage, nm denotes number
of mutants, mu denotes mutation rate. In Genetic Algorithm with
Roulette Wheel (GA-RW), β denotes selection pressure parameter
and other settings are same as GA-TS. In Binary Bees (BBees) al-
gorithm, nScoutBee is number of scout bees, nBee0 is recruited
bees scale, r is neighborhood radius, and rdamp is neighborhood
radius damp rate. In Binary Particle Swarm Optimization (BPSO),
φ denotes correlation coefficient, w denotes inertia weight, and
wdamp denotes inertia weight damping ratio.

Table 3. BDE-DBSCAN without Tournament Selection
Iteration Purity (%) No. of Cluster MinPts Eps

Cluster-in-Cluster (K=3)
1 75.15 2 13 1.0004
39 92.048 5 7 0.73406
50 97.813 50 3 0.48056
106 98.211 39 4 0.5549

Cluster-in-Cluster (K=5)
1 22.145 1 71 7.6892
51 66.09 13 6 0.63819
112 91.52 18 5 0.58259
127 98.356 38 3 0.45127

Corners
1 25 1 171 5.8141
126 84.90 198 1 0.44462
136 99.30 5 5 0.99419
204 99.70 5 7 1.1763

Crescent Full Moon
1 62.50 2 89 4.6966
13 87.333 4 7 1.3172
33 99.083 19 3 0.86229
54 99.667 7 4 0.99568
101 99.75 5 5 1.1132

Half Kernel
1 25 1 346 17.4318
51 91.30 134 1 0.93714
67 96.80 29 3 1.6232

Pin Wheel
1 20.40 2 20 0.26018
18 59.80 4 8 0.16455
55 96.80 9 3 0.10077
96 98.10 6 5 0.13009

Semi Circular (K=4)
1 25 1 871 15.5562
87 99.60 14 3 .91297

Semi Circular (K=8)
1 13.50 1 432 10.4994
20 26.70 2 10 1.5974
44 99.40 37 2 0.7144

Outlier
1 94.118 3 23 5.8594
2 97.941 5 11 4.0522
6 99.902 8 5 2.732

Aggregation
1 78.426 4 29 3.2525
3 82.741 5 12 2.0922
81 91.497 23 2 0.85414

Compound
1 81.955 4 8 1.9695
5 84.211 4 7 1.8423
89 96.992 6 4 1.3926

Pathbased
1 81.667 4 4 1.8388
9 95 22 2 1.3002
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Table 4. Parameter settings of applied algorithms
Algorithm Control Parameters
BDE-DBSCAN nV ar=10, MaxIt=500, nPop=25, βmin=0.2, βmax=0.8, pCR=0.25
BHS HMS=20, HMCR=0.5, PAR=0.1, FW=0.02, FWdamp=0.995
GA-TS nV ar=10, MaxIt=500, nPop=25, pc=0.7, nc = 2 ∗ round(pc ∗ nPop/2), pm=0.2, nm = round(pm ∗ nPop), mu=0.02
GA-RW nV ar=10, MaxIt=500, nPop=25, pc=0.8, nc = 2 ∗ round(pc ∗ nPop/2), pm=0.25, nm = round(pm ∗ nPop), mu=0.025, β=8
BBees nV ar=6, MaxIt=500, nScoutBee=20, nBee0=round(0.3*nScoutBee), r=0.2, rdamp=0.98
BPSO nV ar=8, MaxIt=600, nPop=20, φ=4.1, w=0.73, wdamp=1 and it is linearly decreased by w ∗wdamp in each iteration

In order to validate the BDE-DBSCAN performance, we use
some measures including purity (Eq. 8), entropy (Eq. 10), Davies-
Bouldin Index (DBI) (Eq. 11) and Dunn index (Eq. 12). Entropy
[50, 51, 52] is the degree to which each cluster consists of objects
of a single class. For each cluster, the class distribution of the data
is calculated by pij =

mij

mi
, where mi is the number of objects in

cluster i,mij is the number of objects of class j in cluster i, and pij
denotes the probability of a member of cluster i belongs the class
j. The entropy of each cluster i is calculated using the standard
formula:

ei = −
L∑
j=1

pij · log2 pij (9)

Where L is the number of classes. The total entropy for a set of
clusters is calculated by:

e = −
K∑
j=1

mi

m
· ei (10)

Where K is the number of clusters and m is the total number of
data points. The DBI [53] calculates the similarities between each
cluster C and other clusters, and the highest value is assigned to C
as its cluster similarity. Then DBI measures the average of similar-
ity between each cluster. As the clusters should be compacted and
separated, the lower DB means better clustering result.

1

NC

∑
i

maxj,j 6=i
[ 1
ni

∑
xεCi

d(x, ci) +
1
nj

∑
xεCj

d(x, cj)]

d(ci, cj)

(11)
Where, c: center of data set; NC: number of clusters; Ci: the i-th
cluster; ni: number of objects in Ci; ci: center of Ci; d(x, y): dis-
tance between x and y.
Dunn index [54] is based on the minimum pairwise distance be-
tween objects in different clusters as the inter-cluster separation
and the maximum diameter among all clusters as the intra-cluster
compactness. The larger value of Dunn means better cluster con-
figuration.

mini{minj(
minxεCi,yεCj

d(x, y)

maxk{maxx,yεCk
d(x, y)}

)} (12)

Where, Ci: the i-th cluster; ni: number of objects in Ci; d(x, y):
distance between x and y.
Table 5 shows the comparison results over applied methods. As
shown, BDE-DBSCAN outperforms BHS, BGA-TS, BGA-RW,
BBees, and BPSO on almost all the tests in terms of the purity,
entropy, DBI and Dunn criteria.
For the time complexity measurement, we should take into con-
sideration two different complexities including O(n · logn) and
O(Iteration · Population). It implies that O(n · logn) comes
from DBSCAN algorithm and O(Iteration ·Population) comes

from BDE-DBSCAN. Based on the obtained results, the optimal
accuracy will be reached by the number of population between 20
and 30 and the number of iteration between 200 and 500. Hence,
the most influential parameter is given by n (number of the data
points in considered data sets). It demonstrates that the added ex-
tra time complexity to DBSCAN algorithm can be reasonable for
finding very well suited MinPts and Eps values at the same time.

5.4 Accuracy Improvement
As seen in Table 2, BDE-DBSCAN shows uniformly high accuracy
ranging around 99.4%-100% for all data sets except half kernel (ac-
curacy=99.01%), pin wheel (accuracy=99.03%), aggregation (ac-
curacy=92.513%), compound (accuracy=98.25%), and pathbased
(accuracy=98.333%). Since these data sets consist of border data
objects with absolutely close clusters and connected clusters, we
should apply a modified DBSCAN algorithm to tackle successfully
with these types of data sets. The assumption for optimal accuracy
is the purity with more than 99.3%. By applying any modified ver-
sion of DBSCAN, the accuracy can be considerably improved. We
applied the three revised versions of DBSCAN algorithm from pa-
pers [11], [10] and [13] in Fitness Function section of algorithm 3.
According to Table 6, applied modified DBSCAN algorithms out-
perform almost all the standalone DBSCAN algorithms in terms of
the optimal accuracy. It shows that BDE-DBSCAN algorithm by
integration of any revised DBSCAN which can tackle with multi-
density data sets and close connected clusters, can provide better
combination of Eps and MinPts parameters in the same time.

5.5 Discussion
This paper presented a new hybrid approach combining Binary
Differential Evolution (BDE) and DBSCAN clustering algorithm
called BDE-DBSCAN. This is a meta-heuristic population-based
algorithm to find the optimal initial parameters (Eps and MinPts)
of the DBSCAN algorithm. BDE-DBSCAN tries to find the very
well suited Eps value for each individual (MinPts) in DE. To do
so, a combination of an analytical way of estimating Eps and tour-
nament selection method is employed. Tables 2 and 3 confirm that
tournament selection can provide optimal results in side of an ana-
lytical way. We also applied standalone DBSCAN version for clus-
tering purposes. However, for relatively closed clusters and densi-
ties, we applied three revised version of DBSCAN from literature to
improve BDE-DBSCAN accuracy reasonable. The time complex-
ity of BDE-DBSCAN consists of two phases: O(n · logn) from
DBSCAN algorithm and O(Iteration · Population) from DE.
Experimental results imply that the added time complexity to DB-
SCAN algorithm is reasonable for accuracy improvement.
Convergence of BDE-DBSCAN is studied for finding the optimal
accuracy (maximum purity) over twelve data sets with variety of
shapes and densities. The performance measurement results show
that the BDE-DBSCAN algorithm performs well with optimal ac-
curacy over different data sets. Tables 2 and 6 show results for find-
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Table 5. The comparison results of some optimization algorithms
Algorithm Purity (%) Entropy Dunn (max) DBI (min) No. of Cluster MinPts Eps

Cluster-in-Cluster (K=3)
BDE-DBSCAN 99.9 0.0831 1.3628 1.0442 38 4 0.4806
BHS 98.211 0.1817 0.9935 1.0761 39 4 0.5549
GA-TS 99.601 0.0926 1.3451 1.0543 71 2 0.4616
GA-RW 98.356 0.1784 1.2141 1.7033 38 3 0.4513
BBees 98.211 0.1753 0.9705 1.0772 39 4 0.5549
BPSO 98.356 0.1681 1.3012 1.0812 38 3 0.4513

Cluster-in-Cluster (K=5)
BDE-DBSCAN 99.394 0.1217 1.4112 1.0452 42 1 0.4513
BHS 97.664 0.1663 0.9718 1.0658 25 4 0.5108
GA-TS 98.356 0.1455 1.234 1.0545 38 3 0.4513
GA-RW 98.356 0.1405 1.2802 1.0528 38 3 0.4513
BBees 98.356 0.1508 1.3384 1.0572 38 3 0.4513
BPSO 98.356 0.1527 1.3237 1.0567 38 3 0.4513

Corners
BDE-DBSCAN 100 0 1.5 1.0401 5 2 1.1763
BHS 99.4 0.1104 1.2122 1.0619 5 6 1.0891
GA-TS 99.8 0.1009 1.2831 1.0598 5 6 1.0854
GA-RW 99.7 0.1088 1.2611 1.0518 5 7 1.1763
BBees 99.4 0.1135 1.314 1.0621 5 6 1.0891
BPSO 99.8 0.1006 1.1915 1.0584 5 6 1.0854

Crescent Full Moon
BDE-DBSCAN 99.92 0.0724 1.4125 1.0511 9 4 1.1132
BHS 99.75 0.0962 1.2831 1.0621 5 5 1.1132
GA-TS 99.917 0.0798 1.3341 1.0602 7 5 1.1098
GA-RW 99.75 0.0944 1.3018 1.0612 5 5 1.1132
BBees 99.667 0.0933 1.2517 1.0591 7 4 0.9957
BPSO 99.75 0.0957 1.284 1.0582 5 5 1.1132

Half Kernel
BDE-DBSCAN 99.01 0.1234 1.4981 1.0601 48 1 1.6232
BHS 94.2 0.2217 1.2183 1.1108 58 2 1.3253
GA-TS 97.6 0.1604 1.2703 1.0832 35 2 1.6232
GA-RW 96.8 0.1782 1.2219 1.0842 29 3 1.6232
BBees 91.3 0.2459 1.1418 1.1318 134 1 0.4371
BPSO 94.2 0.2228 1.2712 1.129 58 2 1.3253

Pin Wheel
BDE-DBSCAN 99.03 0.1298 1.5018 1.0581 11 1 0.1301
BHS 98.3 0.1914 1.3211 1.071 8 4 0.1164
GA-TS 99 0.1611 1.479 1.0609 18 1 0.1029
GA-RW 98.3 0.1962 1.1927 1.0612 8 4 0.1164
BBees 98.1 0.1744 1.1981 1.0708 6 5 0.1301
BPSO 98.6 0.1644 1.1928 1.0707 7 4 0.1301

Semi Circular (K=4)
BDE-DBSCAN 99.9 0.0795 1.4114 1.0523 16 1 0.9130
BHS 99.6 0.0997 1.2119 1.0689 14 3 0.9130
GA-TS 99.6 0.0976 0.9912 1.0671 14 3 0.9130
GA-RW 99.6 0.098 0.9988 1.0695 14 3 0.9130
BBees 98.8 0.1995 0.9217 1.0741 40 2 0.7454
BPSO 99.6 0.0982 1.3091 1.0708 14 3 0.9130

Semi Circular (K=8)
BDE-DBSCAN 99.5 0.1114 1.3119 1.0612 21 3 0.7445
BHS 93.4 0.2217 0.8021 1.1125 140 1 0.5051
GA-TS 99.4 0.118 1.2181 1.0693 36 2 0.7144
GA-RW 99.4 0.1224 1.2094 1.0688 36 2 0.7144
BBees 93.4 0.2341 0.8192 1.1218 140 1 0.5051
BPSO 99.4 0.1151 1.1445 1.0874 36 2 0.7144

Outlier
BDE-DBSCAN 99.91 0.0698 1.4012 1.0462 7 5 2.7320
BHS 98.922 0.1711 1.292 1.0641 14 3 2.1162
GA-TS 99.902 0.0888 1.2987 1.0514 8 5 2.7320
GA-RW 99.902 0.0987 1.3719 1.0645 10 4 2.4436
BBees 98.922 0.1823 1.3448 1.0557 14 3 2.1162
BPSO 99.902 0.0767 1.3842 1.0524 10 4 2.4436

Aggregation
BDE-DBSCAN 92.513 0.452 2.1314 1.2543 32 1 0.8541
BHS 82.741 0.7825 1.2491 1.3294 6 4 1.2079
GA-TS 82.741 0.7654 1.8835 1.3487 5 9 1.8119
GA-RW 91.497 0.5027 1.9947 1.2948 23 2 0.8541
BBees 91.497 0.5542 1.9312 1.3128 23 2 0.8541
BPSO 91.497 0.512 1.9881 1.2891 23 2 0.8541

it is continuing on the next page ...
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it comes from the previous page ...
Algorithm Purity (%) Entropy Dunn (max) DBI (min) No. of Cluster MinPts Eps

Compound
BDE-DBSCAN 98.25 0.1761 1.4012 1.0792 56 1 1.5
BHS 96.992 0.1945 0.9871 1.0924 6 4 1.3926
GA-TS 96.992 0.1978 0.9745 1.0931 6 4 1.3926
GA-RW 96.992 0.1986 0.9712 1.0944 6 4 1.3926
BBees 92.732 0.2242 0.7731 1.1391 6 3 1.206
BPSO 97.74 0.1814 1.1044 1.0819 54 3 1.45

Pathbased
BDE-DBSCAN 98.333 0.1746 1.2517 1.0714 31 1 1.3002
BHS 93.667 0.2167 0.8618 1.0911 56 1 0.9194
GA-TS 95 0.1876 0.9984 1.0814 22 2 1.3002
GA-RW 95 0.1894 1.1012 1.0845 22 2 1.3002
BBees 95 0.1903 1.1191 1.0823 22 2 1.3002
BPSO 95 0.1901 1.1018 1.0812 22 2 1.3002

ing the optimal accuracy by very well suited Eps and MinPts, where
BDE-DBSCAN performs well.
The feasibility and efficiency of BDE-DBSCAN for optimization
of different examples are compared to five different algorithms. Ta-
ble 5 depicts the final results, using Binary Harmony Search (BHS),
Genetic Algorithm with Tournament Selection (GA-TS), Genetic
Algorithm with Roulette Wheel (GA-RW), Binary Bees (BBees)
algorithm, and Binary Particle Swarm Optimization (BPSO). BDE-
DBSCAN provides better accuracy based on the purity, entropy,
Davies-Bouldin Index (DBI) and Dunn index among others. More-
over, BDE-DBSCAN and other applied algorithms use different
parameter settings to find the global results; therefore, the effect
of tuning parameters on performance of the algorithms are studied.
Results show BDE-DBSCAN is capable for finding globally opti-
mal accuracy in a relatively small number of generations.
Some improvements are needed in future works. First, utilization
of various cluster validity measures; second, hybridization of other
metaheuristics techniques with DBSCAN, and third, evaluation of
the proposed method with multi-dimensional data sets.

Table 6. The purity of revised versions of DBSCAN
Data set Revised [11] Revised [10] Revised [13]
Half Kernel 99.57% 99.25% 99.33%
Pin Wheel 99.81% 99.12% 99.12%
Aggregation 97.42% 96.95% 97.93%
Compound 99.75% 99.41% 99.44%
Pathbased 99.62% 98.96% 99.18%

6. CONCLUSION
This paper proposes a novel hybrid approach consisting Binary
Differential Evolution (BDE) and DBSCAN clustering algorithm
as BDE-DBSCAN to choose quickly and automatically very well
suited Eps and MinPts parameters for DBSCAN algorithm. BDE-
DBSCAN performance is evaluated using various data sets with
different densities and shapes. Moreover, BDE-DBSCAN outper-
forms other algorithms such as Binary Harmony Search (BHS), Bi-
nary Bees (BBees) algorithm, Binary Genetic Algorithm with Tour-
nament Selection (GA-TS) and with Roulette Wheel (GA-RW),
and Binary Particle Swarm Optimization (BPSO) in terms of the
purity, entropy, Davies-Bouldin and Dunn indices. As illustrated
results over applied data sets, the proposed algorithm provides op-
timal accuracy by the purity ranging around 99.4% and 100%.

7. REFERENCES
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