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Abstract: Buoyancy-controlled underwater floats have produced a wealth of in situ observational
data from the open ocean. When deployed in large numbers, or “distributed arrays,” floats offer a
unique capacity to concurrently map 3D fields of critical environmental variables, such as currents,
temperatures, and dissolved oxygen. This sensing paradigm is equally relevant in coastal waters,
yet it remains underutilized due to economic and technical limitations of existing platforms. To
address this gap, we developed an array of 25 µFloats that can actuate vertically in the water
column by controlling their buoyancy, but are otherwise Lagrangian. Underwater positioning is
achieved by acoustic localization using low-bandwidth communication with GPS-equipped surface
buoys. The µFloat features a high-volume buoyancy engine that provides a 9% density change,
enabling automatic ballasting and vertical control from fresh to salt water (∼3% density change)
with reserve capacity for external sensors. In this paper, we present design specifications and field
benchmarks for buoyancy control and acoustic localization accuracy. Results demonstrate depth-
holding accuracy within ±0.2 m of target depth in quiescent flow and ±0.5 m in energetic flows.
Underwater localization is accurate to within ±5 m during periods with sufficient connectivity,
with degradation in performance resulting from adverse sound speed gradients and unfavorable
spatial distributions of surface buoys. Support for auxiliary sensors (<10% float volume) without
additional control tuning is also demonstrated. Overall performance is discussed in the context of
potential use cases and demonstrated in a first-ever array-based three-dimensional survey of tidal
currents.
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1. Introduction
Oceanographic floats, most notably the Argo program, have dramatically improved our understand-
ing of ocean circulation and expanded the spatial and temporal distribution of worldwide salinity and
temperature measurements (Gould, 2005; Rossby, 2007; Riser et al., 2016; Jayne et al., 2017; Wong
et al., 2020). When considering the in situ sensing needs to support monitoring, simulation, and
management of coastal waterways (Arkema et al., 2015; Liu et al., 2015; Wilkin et al., 2017; Fringer
et al., 2019), multitudes of floats (i.e., “arrays”) are a conceptually attractive approach. However,
floats designed for the global ocean are not well-suited to coastal environments. Oceanographic
floats include pressure housings and hydraulic buoyancy control systems for 2000 m dives and can
tolerate relatively low accuracy depth control of O(10) m. Coastal waters extend from estuarine
systems out to the continental shelf and have a maximum depth of roughly 200 m (Bowden, 1983).
These shallower waters necessitate higher accuracy O(1) m depth control, but lower hydrostatic
pressures permit simpler (and less expensive) mechanical buoyancy engines (D’Asaro, 2003; Jaffe
et al., 2017). Similarly, oceanographic floats are deployed for long durations (weeks to years), often
without intention of recovery. Thus, data communication is accomplished via satellite. In coastal
environments, smaller horizontal domains O(1–10) km permit inexpensive hardware recovery and
operations within the range of cellular and radio communication, eliminating the reliance on satellite
communication. Lastly, coastal environments can exhibit strong density gradients where fresh river
water enters coastal seas, or they can be well-mixed in regions with strong tidal currents. A coastal
float must accommodate both conditions.

A small number of floats suitable for coastal environments do exist. The sole commercial
example is MRV Systems’ ALAMO float. While designed for open-ocean research [e.g., rapid
deployment in front of hurricanes and under-ice profiling in the Arctic (Jayne and Bogue, 2017)],
it is sufficiently small (∼1 m tall, 9 kg) to permit shallow water deployments and its buoyancy
engine can accommodate the density gradients present in coastal waters. The remaining examples
are custom platforms developed by individual research groups. D’Asaro et al. developed the MLF
float (D’Asaro et al., 1996; D’Asaro, 2003) for 3D Lagrangian flow-following to study convection,
vertical velocity, vorticity, and turbulent mixing in the upper-ocean (< 300 m) mixed layer, as
well as in large-scale tidal channels (D’Asaro and Dairiki, 1997; Lien et al., 1998; D’Asaro and
Lien, 2000; D’Asaro et al., 2002; Steffen and D’Asaro, 2002; Alford et al., 2005; D’Asaro, 2014;
Shcherbina et al., 2018). The MLF can also measure internal waves, surface waves, and upwelling
(Lien et al., 2002; D’Asaro, 2004, 2015). Roman et al. developed a coastal float equipped with
bottom-tracking and a downward-looking camera for visual benthic explorations (Schwithal and
Roman, 2009; McGilvray and Roman, 2010; Roman et al., 2011), and later combined thruster
and buoyancy-control for improved vertical actuation accuracy and efficiency (Snyder et al., 2018).
While the previously mentioned profiling, Lagrangian, and bottom-tracking floats are roughly 1
m scale, Jaffe et al. (2017) designed the miniature Autonomous Underwater Explorer (M-AUE)
with a form factor of roughly 0.2 m to better emulate passive and vertically migrating larvae, as
well as improve measurements of submesoscale ocean dynamics. With an array (16 floats), they
demonstrated plankton patch formation in internal waves on the California continental shelf. More
recently, higher capacity coastal floats have been developed for observing biogeochemical processes
(Schulze Chretien and Speer, 2018) (Gene Massion, personal communication), though their expense
and size hinder array deployments.

Inspired by the success of these groups, the objective of this work was to develop an inexpensive
coastal float array (Figure 1). The new float, dubbed the µFloat (“microFloat”), fills the gap in
operational space between the capabilities and form factors of existing floats and reduces unit costs
by leveraging recent advancements in oceanographic and electronic technology. In Section 2, we
describe the overall design of the µFloat, with the buoyancy engine implementation and evaluation
described in Section 3. In Section 4, we describe the underwater localization system and undertake
field testing in quiescent water (Lake Washington, WA). Finally, in Section 5, we demonstrate the
full array system in an energetic tidal channel (Agate Pass, WA). Comparison between quiescent
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Figure 1. µFloat operational concept.

benchmarks and dynamic performance is presented in Section 5. We finish by discussing implications
for future sampling objectives and how µFloats fit within the multirobot system literature in
Section 6.

2. µFloat Design
2.1. Design
The µFloats were designed for short-duration sampling (≤ 1 day) of quickly evolving phenomena
[O(10) minutes; e.g., eddies] in coastal waters. Regions of interest have small horizontal ranges [O(1)
km], but exhibit strong spatial gradients that necessitate high spatial sample resolution [O(10) m].
Operational depths may range from 10 to 100 m and flow speeds may exceed 1 m/s. Water density
may vary by as much as 3% (fresh to salt water) or be well-mixed. Given this environment and the
intended array sampling strategy, the µFloats were designed with the following requirements:

1. Depth-holding accuracy within 1 m to provide vertical coverage throughout a 100 m water
column.

2. Movement to target depth is achieved quickly (< 5 minutes).
3. Float horizontal position is resolved to within 10 m at minimum 1 km range.
4. Horizontal positions are updated at least once per 10 seconds.
5. Rapid recovery and redeployment are possible, enabling repeat surveys in the region of interest.
6. Individual units are easily handled by a single person without special equipment to minimize

operational costs.
7. Unit costs are minimized.

2.2. Implementation
2.2.1. µFloat Architecture
The µFloat (Figure 2) was designed to be as small as possible while respecting constraints for low-
cost electronics, future sensor suite expansion, and buoyancy engine capacity. Costs were minimized
through the use of hobbyist and commercial-off-the-shelf parts wherever possible, and all custom
components were designed for inexpensive production and assembly (see Supplemental Materials
for a cost breakdown). The main housing is a 13 cm (4”) diameter, 40 cm long acrylic tube with
double O-ring piston seals (Blue Robotics) and custom end caps. It has a rated depth of 100 m.

The µFloat can position itself vertically in the water column by manipulating its density relative
to the surrounding water through the use of a “buoyancy engine.” The buoyancy engine is comprised
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Figure 2. µFloat with annotated core subsystems.

of a solid acetal (Delrin) piston that extends through a T-ring seal in the bottom end cap. Actively
controlling the piston extension changes the total displaced volume of the float while mass remains
constant, thus changing the float density. The piston is driven by a lead screw connected to a brushed
DC motor with planetary gearbox (ServoCity) and motor controller (Pololu). Piston position is
inferred by a quadrature encoder attached to the motor shaft, and limit switches are mounted at
both extents of the piston position to prevent overextension. Buoyancy engine cost was prioritized
over energy efficiency, a tradeoff deemed acceptable since our observational focus was dynamics over
short time intervals (< 1 day).

The nominal volume of the float with the piston fully retracted is 4700 cm3. Fully extended, the
piston increases the volume by 450 cm3 (±10 cm3 due to manufacturing variability), providing a
9% change in total displaced volume. Floats are ballasted to be within 50 g of neutral buoyancy
with their piston halfway extended in fresh water and have an approximate mass of 4.9 kg. While
not strictly necessary, we add calibrated weights when deploying in salt water to maintain balanced
bidirectional performance of the buoyancy engine.

The µFloat is controlled by a single-board computer (Beaglebone Black) running a Linux-Debian
operating system that runs mission control, sensor telemetry, and data acquisition. Programming
and data offload occur via Wi-Fi when on the bench or onboard the vessel. All system status and
sensor data are recorded continuously to a 32 GB micro SD card. A GPS receiver (Adafruit) provides
position and pulse-per-second (PPS) clock synchronization while on the surface. For recovery,
coordinates are transmitted to a support vessel via redundant 900 MHz RF radio (XBee) and
cellular (Particle Electron) modems. These communication methods also permit the exchange of
short data messages and commands between floats and the support vessel, such that floats can
be retasked without physical retrieval. For underwater communication and localization, we utilize
nanomodems (Fenucci et al., 2018; Neasham, 2016), an inexpensive (∼$250 US) underwater acoustic
modem (further details are in Section 4.2). An onboard inertial measurement unit (IMU) also
records orientation and acceleration (translational and rotational). To date, the IMU data have
only been used for diagnostic purposes (e.g., identifying seabed contact), however we anticipate
adding inertial navigation between acoustic position updates to improve localization accuracy and
resolution. Additional USB, serial, analog, and I2C connections are available for auxiliary sensor
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integration. The top end cap hosts all of the external interfaces and components. These comprise
a pressure sensor (Honeywell) and temperature sensor (BlueRobotics). The GPS patch antenna,
nanomodem acoustic transducer, and RF and cellular antennas are potted in a single, custom unit.
Additionally, a charging plug, vent plug, auxiliary port, and power switch are all also located on the
top end cap. Power is provided by a rechargeable Li-ion battery pack with 100 W-hr capacity. The
hotel load consumes between 3 and 5 W, resulting in a maximum endurance of 20–30 h.

3. Buoyancy Control Implementation and Evaluation
Active control of the µFloat buoyancy engine is necessary to efficiently reach target depth and
to maintain that depth under environmental disturbances. Overall, we prioritized isobaric/depth
control, rather than Lagrangian vertical behavior, to ensure vertical distribution of the array
throughout the water column.

3.1. µFloat Buoyancy Control
Control of the µFloat buoyancy engine is executed in software using feedback from the pressure
sensor to achieve isobaric control. For simplicity, we will refer to this as “depth control,” noting that
pressure in dbar and depth in m are interchangeable within an accuracy of 3% (i.e., maximum
3 m difference at 100 m rated depth). Prior to deployment, a predefined schedule of target
depths and durations is constructed. Using a graphical-user-interface (GUI) developed in MATLAB
(Mathworks®), the schedule is uploaded to floats via Wi-Fi.

During a dive sequence, depth control is achieved via a closed-loop two-stage cascaded
proportional-derivative (PD) controller operating based on both float depth z and vertical velocity v
(Figure 3), similar to that implemented by Berkenpas et al. (2013). Float depth is provided by
the pressure sensor sampling at 10 Hz. The raw data are smoothed using a fourth-order digital
Butterworth filter. Float velocity is computed via a digital differentiation of the filtered pressure
signal. The filter introduces a one-second lag in both depth and velocity observations. In the first
stage of the controller, the position error (target minus current depth) is calculated. From this error,
a recommended velocity is computed based on Kz gains and checked against a user-defined upper
speed limit (Vlimit) to determine a target velocity. In the second stage, velocity error (target minus
current) is computed and the output motor command (with checks for maximum and minimum
values) is calculated based onKv gains. The final motor command is expressed as a signed percentage
of the maximum motor speed.

Ambient pressure is sampled whenever the float surfaces and dive pressure (depth) is computed
relative to the most recent surface pressure. This method helps to mitigate errors due to absolute
drift of the pressure sensor (< ±0.5 dbar/hour, ±1 dbar max) that is primarily associated with large
(> 10 ◦C) changes in temperature (e.g., sun-heated on deck and then deployed into cold water).

Figure 3. Block diagram of µFloat depth control. Control scheme is closed-loop, two-stage, cascaded
proportional-derivative (PD) controller with feedback from the pressure sensor. Inputs are target depth and velocity
limit Vl imit for constraining vertical speed.
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Figure 4. Depth control of uFloat 009 during Lake Washington - Test 1 (a). Three dives are highlighted, with
detailed characteristics pictured in (b-f), (g-k), and (l-p). Velocity limit for each dive was 0.4 m/s (b-f), 0.2
m/s (g-k), and 0.6 m/s (effectively unconstrained, l-p). The grey region in (g-k) highlights the piston retraction
period for a dive initiated from the surface. The settling period is highlighted in purple (b-p).

Note that the implemented controller included a full proportional-integral-derivative (PID) control
with the gain set K = [P, I,D] on both stages. When tuning gain sets Kz and Kv in a series of
shallow water laboratory trials, best performance (minimized time to target depth and maximized
depth-holding stability) was found with integral gains Iz and Iv set to zero. The tuned gain sets Kz

and Kv were held constant for subsequent testing. As shown in Figure 4, the velocity limit (Vlimit)
improves transient dynamics, as well as enabling constant-speed profiling modes.

3.2. Buoyancy Control Testing
Quiescent-flow field tests were conducted on 27 July 2020 in Lake Washington, WA, a large
freshwater lake with a muddy bottom and a depth of 30–65 m in the testing region. Winds were
light (1–2 m/s) and varied from SE to S over the course of the day.
µFloats were deployed with a preprogrammed depth schedule designed to evaluate the buoyancy

engine’s transient dynamics and depth-holding accuracy, as well as float compressibility. The lake
depth permitted control assessment over approximately half the float range, with target depths
varying from 2.5 to 42.5 m. The velocity limit control parameter (Figure 3) ranged from 0.2 m/s
(slow) to 1.0 m/s (effectively unrestricted, given the float terminal velocity of ∼0.5 m/s).
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During this test, several µFloats were equipped with external sensors to provide supplementary
data sets and to demonstrate adaptability. Four floats were equipped with hydrophones for acoustic
assessment of nanomodem transmissions (see Section 4) and three floats with cameras (GoPro Hero
6 and Session 5) for visual examination of float performance. For example auxiliary data series, see
Supplemental Materials.

3.3. Evaluation of Depth Control
3.3.1. Data Analysis
To distribute floats throughout the water column, the buoyancy engine controller must be able to ef-
ficiently move a float to a target depth. To characterize depth control performance, the dive sequence
was parsed into actions (any move from one target depth to another). From each action, we computed
the following metrics: (1) settling time, the elapsed time between when the float moved 0.25 m from
its starting depth to settling within 0.25 m of the target depth; (2) overshoot, the max deviation
(m) from the target depth prior to settling; (3) settled offset, settled depth (mean depth during
settled period) minus the target depth; and (4) deviations around the settled depth, the interdecile
range of the time-varying depth minus the mean settled depth during the settled period. Actions
with steady-state periods less than 30 seconds were excluded due to lack of statistical convergence.

3.3.2. Depth Control in Lake Washington
The buoyancy control algorithm was able to successfully and consistently control float depth across
a range of depths, as pictured in Figure 4a. For a float starting on the surface with piston fully
extended (e.g., Figures 4g–4k), it took ∼30 s to retract the piston past the neutral buoyancy position
to begin diving. This must be accounted for when deploying in energetic environments to ensure the
floats reach depth within the region of interest, either by deploying upstream of that region or by
pre-retracting the piston. Floats have a ∼0.5 m/s terminal velocity (e.g., Figure 4m, min. 125). The
velocity limit, applied to adjust the dive speed of the float, proved effective at reducing overshoot
when the limit was smaller than the terminal velocity (e.g., compare overshoot in Figures 4b,g
to Figure 4l). While the unconstrained float (Figures 4l-p) reached the target depth fastest, the
additional time spent recovering from the larger overshoot resulted in a settling time similar to that
of the float with a 0.2 m/s velocity limit (∼180 s), which conversely took longer to reach the target
depth, but experienced minimal overshoot (∼2 m). However, even when the float is sinking steadily
at the targeted rate, a dynamically stable state, the simplicity of the control implementation results
in unnecessary twitchiness in the motor (e.g., Figure 4h,j, min. 65–67).

Extracting depth performance statistics from all float dives taken in Lake Washington (Figure 5,
colored circles), we find that overshoot can vary from < 1 m to 14 m depending on target depth
and the velocity limit. For purposes of dive planning, the average settling time is roughly 10 s + 4
s per meter of target depth, an effective average dive velocity of 0.25 m/s. Increasing the effective
dive velocity would require a more advanced control strategy (e.g., model predictive control). Floats
are able to hold depth to within the absolute accuracy of the pressure sensor (±1 dbar; Figure 5c),
with deviations around the settled depth < 0.2 m (Figure 5d). While this depth-holding accuracy is
desirable, it is achieved at the cost of near-continuous actuation of buoyancy engine (Figures 4e,j,o),
increasing power consumption (Figures 4f,k,p).

A velocity limit ≤ 0.5 m/s appears to improve consistency of settling time and overshoot across
variably ballasted floats (Figures 5a,b), but does not influence the depth-holding characteristics of
the float, though the sample size (4-6 samples) for each combination of step change and velocity
precludes robust statistical analysis. Lastly, variations in buoyancy control dynamics due to the
attachment of modestly sized auxiliary sensors (i.e., hydrophones and GoPro cameras, <10% Vo)
are indistinguishable from variations across standard floats and thus do not require any special
control tuning. Note that Agate Pass data are discussed in Section 5.3, but differences between
performance in Lake Washington and Agate Pass are nearly all attributable to higher turbulence at
the latter site.
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Figure 5. Fleet-wide statistics for depth control actions during Lake Washington (circle) and Agate Pass (square)
tests. All Agate Pass floats were programmed with a 0.3 m/s velocity limit. 0.5, 0.6, and 1 m/s velocity limit
data points from Lake Washington include an offset (1 m) on the horizontal axis to facilitate visualization.

3.4. Evaluation of Float Compressibility
While the depth control accuracy achieved was well within the design requirements, the motor
moved more frequently than expected given the quiescent conditions in the lake. Once the float has
reached neutral buoyancy (i.e., its density matches that of the surrounding water), its stability should
primarily depend on its compressibility relative to the compressibility of water, as any difference
will generate a relative change in buoyancy if perturbed from the settled depth. If the float is
less compressible (stiffer) than water, a restoring force results, returning the float to the original
depth, or more precisely, the original isopycnal (D’Asaro, 2018). If the float is more compressible
than the surrounding water, neutral buoyancy is a dynamically unstable state and the float must
actively control its density to maintain a desired depth or isobar. For such a float, passive isobaric
control and Lagrangian/isopycnal control requires stratified water. But even though the µFloats are
expected to be more compressible than water due to the housing, the initial forces resulting from
a perturbation from neutral buoyancy are small and would accelerate the float on a time scale of
minutes, in contrast to the motor actuating on a time scale of seconds.

To better understand the impact of float compressibility on dynamic stability, we characterized
compressibility by examining how the neutral-buoyancy piston position—the average position of the
piston when holding depth—changed with hydrostatic pressure. A decrease in nominal float volume
Vo due to compression increases the nominal density (given a constant float mass). Thus, to maintain
neutral buoyancy, the piston must extend to compensate for the lost nominal buoyancy. Accordingly,
we assessed float compressibility γ by computing the difference between neutral buoyancy piston
volume Vpiston at 2.5 m (reference depth, zref ) and the piston volume for neutral buoyancy at greater
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Figure 6. Equivalent change in float density with pressure due to compressibility. Points indicate an individual
measure of float compressibility. Vertical grey bars indicate confidence intervals based on piston position
uncertainty (computed from drive train tolerance stack-up). Water density changes due to compressibility (for
fresh water at 15 ◦C, dotted line) and vertical salinity gradients (dashed lines) are included for reference.

depths z, normalized by the nominal float volume Vo, and accounting for the change in water density
with depth ρ(z) produced by the thermocline (Figure 8b). That is,

γ = 1
∆p

∆V
V

=
V0(ρ(zref )

ρ(z) − 1) + Vpiston,zref

ρ(zref )
ρ(z) − Vpiston,z

(p(z) − p(zref ))V0
.

To interpret float compressibility in the context of water compressibility or stratification, we cast
compressibility into a change in nominal float density ∆ρnominal with hydrostatic pressure, assuming
a reference water density ρref = 1000 kg/m3 – fresh water at 15 ◦C, following

∆ρnominal = γ ∗ ∆p ∗ ρref .

This analysis reveals that the floats are significantly more compressible than water (Figure 6), though
only about 1/3 of the loss in volume can be attributed to the compression of the cylindrical housing
shell [following Roark et al. (1976)]. The remainder is hypothesized to be trapped air exposed to
ambient pressure, since the shallow and short dives are likely insufficient for dissolution of entrained
air and surface bubbles (D’Asaro, 2003).

This high relative compressibility means that in well-mixed or weakly stratified waters the float
is isopycnally unstable, and thus requires frequent actuation to maintain a target depth. If deployed
in a stably stratified environment, the water density gradient will counteract float compressibility.
Results from Lake Washington indicate that the minimum stratification necessary for isopycnal
operation is approximately δρ/δz > 0.00015 (g/cc)/m, or about 0.2 PSU/m at 15 ◦C salinity gradient
or 1 ◦C/m at 35 PSU temperature gradient. While the µFloat would ideally be less compressible
than water to enable passive depth control, this would require a more expensive housing, running
counter to the design specification to minimize cost. And even with a fully rigid housing, additional
operational effort (e.g., dipping the float in soapy water) would be required to mitigate the impact
of entrained air bubbles.

Lastly, the question remains whether dynamic instability due to float compressibility drives the
near-continuous motor movement. Based on the characterized compressibility, if a µFloat with piston
extended such that it is neutrally buoyant at 40 m is offset from that depth by 0.1 m, it would
take about 1 minute to move another 0.1 m distant. While of similar magnitude, the movements
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around the settled depth occur on the order of 10 s, much faster than can be attributable to the
compressibility. As such, we believe the current control algorithm (Figure 3), while decently tuned
for the transient performance, is overly sensitive when holding depth and the primary cause of the
near-continuous manipulation of the buoyancy engine.

4. Underwater Localization Implementation and Evaluation
4.1. Design
Design of the underwater localization system was motivated by the desire for high-resolution float
trajectory data, from which horizontal velocity could be reliably extracted. While GPS provides
float position while on the surface, the signal does not penetrate subsurface. As with the buoyancy
engine, we prioritized an inexpensive localization solution.

4.2. Implementation
For subsurface positioning, we utilize a network of Surface Localization Buoys (SLBs) equipped with
acoustic nanomodems (Figure 7a). A minimum of three SLBs, either moored or drifting, provide a
long-baseline style localization architecture (Smith and Abel, 1987). Surface buoy electronics are a
simplified subset of the µFloat’s contained within an acrylic housing (Blue Robotics). The external
structure consists of buoyant yellow foam upper and a subsurface spar (1 m long) from which the
nanomodem transducer extends.

The nanomodem (v2) is a low-cost acoustic modem (∼$250) that exchanges messages on a
carrier frequency band of 24–28 kHz. Nanomodems a maximum data rate of 40 bit/s, a source
level of 168 dB re 1 µPa 1 m, and a nominal range of 2 km (Fenucci et al., 2018; Neasham,
2016). Nanomodems were chosen as they met the communication requirements necessary for
underwater localization at significantly lower cost (10x) than other commercially available acoustic
modems. When integrated, the nanomodem was still under development and the hardware could
not parse overlapping messages, necessitating a time-division-multiple-access (TDMA) approach.
Ping scheduling was structured to maximize position update rate: SLBs broadcast uniquely coded
pings in a round-robin fashion (Figure 7b), and all nanomodems within range (i.e., both those
on subsurface µFloats and on nearby SLBs) recorded and time-stamped received pings. While the
modems are capable of bidirectional communication, neither µFloats nor SLBs responded to the
broadcast pings, as this would have decreased the position update rate.

Figure 7. Localization architecture: a localization buoy (SLB) being deployed by the first author (a); nanomodem
ping scheduling (b); computation of the horizontal distance LH from the time of flight (c); plan view of the
localization array (d).
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Positional information was determined in postprocessing, after data have been off-loaded from
both the µFloats and SLBs. The sent and received pings are aligned to calculate the time-of-flight and
estimate the corresponding range based on a measured or assumed sound speed (Figure 7c). Three or
more range estimates occurring within the round-robin time are combined to trilaterate the µFloat
positions with a least-squares fit (Norrdine, 2012). The resulting localizations are intermittent, noisy,
and can indicate physically unrealistic float motion. Egregious outliers (e.g., positions on land)
are removed. The remaining data are smoothed using a robust (outlier-rejecting) locally weighted,
quadratic regression (MATLAB “smooth” function with “rloess” option). Window size was chosen
programmatically to ensure adequate data were included in the regression: it was initialized at 60
seconds and increased by increments of 60 seconds (to a maximum of 240 seconds), until at least
80% of the regression windows along the track included a minimum of 10 individual position points.
Smoothed position data are only output for each raw position data, i.e., the data remain gappy with
a nonuniform sample rate. To compute velocity along the track, we temporarily fill the gappy data
via linear interpolation of the smoothed position data, then apply a first-order central-difference
scheme, and finally save only those velocity estimates associated with raw samples. Additional
details on localization processing are provided in Harrison (2021).

It is important to note that this time-stamped approach depends on synchronized clocks. Both
SLB and µFloats clocks are synchronized to the GPS pulse-per-second output while on the surface.
When subsurface, the µFloat clock (crystal oscillator on the onboard computer) has a maximum
drift of 30 parts-per-million, such that after 30 minutes underwater, the maximum offset expected
is 0.054 s. Additionally, the assumption of negligible float movement between pings depends on the
ping offset and water velocity. For example, if the horizontal float velocity is 2 m/s and the ping
offset is 1 second, float position may change up to 6 m in the time required to receive all three pings
in a localization set. This effect can degrade the benefits of overdetermined localization using more
than three pings.

4.3. Testing of the Underwater Localization System
The underwater localization system was evaluated during the µFloat testing in Lake Washington
described in Section 3.2. Two test periods occurred, with layouts as pictured in Figure 8a. Five SLBs
were deployed during both tests, scheduled with a 2 s ping offset. Prior to Test 1, profiles of water den-
sity and sound speed were measured (Valeport miniSVP), revealing a strong thermocline (Figure 8b).

Test 1 (LW-1) lasted approximately 2.7 hours and evaluated connectivity and accuracy. As such,
three SLBs were deployed in an equilateral triangle (∼200 m on edge) around the floats to provide
consistent localization data throughout the experiment. Two additional SLBs (4,5) were initially
deployed about 1600 m distant and moved sequentially closer to the floats over the course of the
2-hour deployment. To better understand acoustic conditions impacting nanomodem connectivity,
four µFloats were deployed with an externally mounted hydrophone (OceanSonics icListen HF).

Test 2 (LW-2) lasted approximately 30 minutes and evaluated optimal localization accuracy, with
all five SLBs deployed in a cross-configuration, with a maximum separation distance of 300 m. To
assess horizontal position uncertainty, two µFloats were programmed to sit on the lake bottom for
15 minutes, thus acting as stationary targets, following Casagrande et al. (2019). An additional
four floats were deployed at depths varying from 2 to 10 m, but their data were utilized only in
connectivity analysis.

4.4. Evaluating Nanomodem Connectivity
4.4.1. Nanomodem Connectivity Analysis
Underwater localization relies on the receipt of pings from a minimum of three surface buoys within
the localization window (e.g., 12 s in Lake Washington) and is thus impacted by the underlying
connectivity between source and receiver. We evaluated connectivity as the ratio of pings received
from an SLB relative to the total possible pings.
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Figure 8. Layout of surface localization buoys (SLBs) (a) and sound speed and density profiles (b) during Lake
Washington tests. � and 6 mark the starting and final locations, respectively, for each test. Some SLBs were
manually relocated during Test 1, with H marking each new starting location. Twenty µFloats were deployed in
the center of the triangle formed by SLB 1-2-3 in Test 1 and two floats nearly collocated with SLB 1 in Test 2.
SLB movement was wind-driven, with light wind (1–2 m/s) varying from SE to S over the course of the day.

To evaluate how connectivity was impacted by acoustic conditions, data from the µFloat-mounted
hydrophones were processed in MATLAB (Mathworks®) to extract pressure spectral density levels
over the duration of the test. We calculated the 10-second moving-median sound pressure level
within the 24–28 kHz transmission frequency band as a measure of ambient noise. Pings appeared
as short, distinct elevations in this band, and were identified using a matched filter. The received
level for each ping was calculated as the root-mean-square band level over the duration of the ping.
Subtracting the ambient noise level from the received level (in dB space) provided a signal-to-noise
(SNR) ratio for each ping in the hydrophone data stream. The hydrophone time series was manually
aligned to µFloat time series by reference to both the nanomodem ping record and µFloat buoyancy
engine motor noise. The nanomodem pings recorded on the hydrophone were then labeled with their
corresponding source SLB by reference to the known ping schedule. µFloat depth and transmission
distance for each possible ping were extracted from the µFloat data series. Additional details on
acoustic processing can be found in Harrison (2021).

4.4.2. Nanomodem Connectivity Performance
In general, nanomodem connectivity rates are expected to decrease with decreasing SNR. However,
the SNR cutoff above which receptions can be expected (i.e., connectivity rates > 50%) must
first be determined before assessing the relative impacts of propagation losses (e.g., spreading
and absorption) and elevated background noise (e.g., vessel traffic). To do so, we binned all Lake
Washington pings into 5 dB levels (Figure 9) and computed the ratio of received to possible pings.
Levels for missed pings were estimated via interpolation from temporally adjacent received pings
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Table 1. Overall nanomodem connectivity. Percentage received is relative to total
possible. Percentage indirect (i.e., paths with a suspected bottom interaction) is relative
to total received messages. Distance is the root-mean-square distance between source
and receiver device for all possible transmissions during the indicated test.

Possible Received Indirect Distance

LW - 1 SLB 15 190 4788 32% 2744 57 % 850 m
µF 45 855 27 672 61 % 3538 9% 650 m

LW - 2 SLB 3041 1950 64% 1259 65 % 160 m
µF 2982 2695 90 % 448 17% 110 m

Agate Pass SLB 4817 2160 45% 0 0% 280 m
µF 13 812 7618 55 % 0 0 % 330 m

Figure 9. Received messages by SNR. This includes only data from the four µFloats with externally mounted
hydrophones. (a) Total number of possible receptions, actual receptions, and suspected indirect paths; (b) received
percentage relative to total possible; (c) indirect (i.e., transmission with suspected bottom interaction) percentage
relative to total received. Bins with fewer than 20 receptions (less than 0 dB) are omitted.

from the same source. As expected, connectivity was strongly correlated with ping SNR, with
reception rates near 100% for SNR > 30 dB and reducing roughly linearly down to 0 dB, at which
point reception rates were effectively 0% (Figure 9a).

To disambiguate the impact of range, receiver depth, and elevated background noise, we examined
how nanomodem connectivity varied with depth and distance (Figure 10a). High reception rates
(> 75%) are observed within 400 m, followed by rapid deterioration with distance and a maximum
range of ∼1000 m. This range is slightly shorter than expected: the nanomodem source level is
168 dB and average noise levels in the carrier frequency band were roughly 75 dB, indicating
a maximum allowable propagation loss of ∼90 dB. Near-field (< 60 m) receptions exhibit 45–
55 dB SNR, corresponding to a loss of 35 dB in the first 60 m of transmission, which matches
spherical spreading. Theoretically, the remaining 55 dB could provide > 10 km range, assuming
< 1 dB/km loss due to absorption in fresh water and cylindrical spreading, but the observed range
was significantly smaller.

The diminished nanomodem range was partly due to the downward refraction due to the strong
thermocline (Figure 8b) present on the day of testing. Comparison of the acoustic path distance
to GPS-based source-receiver distance revealed a significant percentage of pings on both SLBs and
µFloats with times-of-flight corresponding to a propagation path that included a bounce off the
bottom (Table 1). Flagging these pings and plotting by depth and distance, we see that nearly all
receptions outside 375 m likely included a bottom bounce (Figure 10b). Received levels for direct
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Figure 10. Nanomodem connectivity during Lake Washington as a function of depth and source-receiver
separation distance. (a) overall percent received relative to possible receptions; (b) percentage of received
messages suspected of following an indirect path; (c) SNR of received pings. (d) and (e) show examples of
the matched filter correlation strength used to identify the pings, centered on peak correlation time for each
received ping. White and black marks on (c) correspond to (d) and (e), respectively.

paths are 5–15 dB higher than bottom bounce paths of the same acoustic path distance. This
attenuation range is consistent with expectations for bounces of varying grazing angles off a soft
muddy bottom (Jackson et al., 2010). The impact of refraction is also evident in how connectivity
(Figure 10a) and SNR (Figure 10c) change with receiver depth. Within 375 m, deeper receivers
maintain higher reception rates and SNR at longer ranges. Beyond 375 m, bottom bounce effects
dominate.

Nonetheless, the nanomodems have proven effective at SNR as low as 0 dB in previous deploy-
ments, so the degradation in connectivity from 30 to 0 dB observed here was worse than expected.
Examination of the hydrophone records revealed that, as range increased, the channel also exhibited
a severe multipath response composed of multiple arrivals as shown in Figure 10e, as compared with
the strong peak in the near-range (d). Here, a perfect signal has one peak of magnitude 1, and
a signal with very low SNR will have a low peak value. However, a signal with high SNR and a
lot of multipath with also show low correlation. Pings sent from similar distance as (e) that were
observed on the hydrophone record but not recorded by the floats exhibited even more dramatic
multipath signals. This greatly increased the probability of missing receptions and the probability
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of locking onto a reflected path rather than the earliest path. Thus, the performance reported here
is representative of severely unfavorable acoustic conditions.

While elevated background noise is another possible cause of reduced range, vessel traffic (the
primary contribution during testing) increased background levels in the transmission band by
roughly 10–20 dB for short periods (1–2 minutes), and thus was deemed insignificant relative to the
propagation losses discussed here.

The significance of propagation losses due to range, receiver depth, bottom interactions, and
multipath signal degradation is borne out when comparing connectivity statistics for all µFloats
and SLBs (Table 1) across the Lake Washington tests. Test 1 experienced lower SLB receptions,
due to the lengthy period SLBs 4 and 5 spent at far range (> 750 m) from the other three SLBs.
Connectivity improved dramatically during Test 2, as all SLBs were placed within 200 m of each
other and the floats. µFloat connectivity matched this trend for the same reasons. Additionally, the
µFloat reception rates were significantly higher and suspected bottom interaction rates significantly
lower than those of the SLBs, consistent with the thermocline favoring targets at depth.

4.5. Evaluating Localization Accuracy
4.5.1. Analysis of Localization Accuracy
The ultimate purpose of the nanomodem array is to accurately estimate the horizontal positions
of subsurface µFloats. Because the true location of the floats is unknown while underwater, system
accuracy was assessed by examining acoustic localizations of the SLBs, as compared to their “true”
GPS data. From this standpoint, the SLBs are functionally equivalent to µFloats holding depth at
1.5 m.

To generate the “true” position reference for all SLBs, their raw (1 Hz) GPS data were smoothed
using a low-pass filter with 0.0167 Hz cutoff frequency (60 second period). A first-order central-
difference scheme was applied to the smoothed position data to provide the horizontal velocity
reference.

To isolate the influence of the source geometry on localization accuracy, we also applied the
localization algorithm using the GPS-measured distances between source and receiver SLBs as the
range inputs in the trilateration process (replacing the distances calculated from acoustic time-of-
flight).

4.5.2. Accuracy of Underwater Localization
When SLBs received consistent pings, localization was possible and positions calculated from raw
acoustic data generally matched GPS data, though with considerable noise (Figure 11a). To correct
for acoustic paths with suspected bottom bounces, we estimated the corresponding direct path
distances by assuming a nominal water depth (60 m in Test 1, 30 m in Test 2) and a triangular
path from source to bottom to receiver. Methods for identifying paths with suspected bounces and
corrections are detailed in Harrison (2021). Correcting for bottom bounces reduced scatter, but did
not eliminate it. Test 1 and Test 2 have similar position errors before correcting for bounces (Table 2),
but the corrected values for Test 1 are twice as accurate as for Test 2. The likely cause is that Test
1 occurred over the main basin of the lake, where the nominal depth of 60 m was widely applicable.
Test 2 (Figure 11a) occurred over a sloped region of the lake, with depth increasing by 30 m from
SLB 4 to SLB 5. Thus, the single nominal depth used to correct for bounces proved less effective.
However, even after correction, positions remain noisy and indicate nonphysical trajectories.

Smoothing the data produces physically realistic tracks. Position errors (50th percentile) are
within 4 m of the GPS positions in Test 1 and 8 m in Test 2 (Table 2). Artifacts do remain (e.g.,
excursions from GPS tracks for SLB 2, 3, and 5). To explore their source, we examined how the
localizations improved if GPS-based distances were used in the trilateration process. The resulting
estimates matched the GPS locations to within GPS accuracy (Table 2) in Lake Washington, which
suggests that the errors in acoustic-based trilateration are a consequence of uncertainty in time
of flight due to sound speed variations, ray path length, and bottom interactions, rather than
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Figure 11. Localization system accuracy during Lake Washington - Test 2 (a,b) and Agate Pass (c,d). (a) and
(c) compare acoustic localizations of SLBs relative to their known GPS positions. In Lake Washington, positions
based on trilateration using GPS-estimated distances are indistinguishable from the true GPS track and omitted.
In Lake Washington, “raw” localizations include calculations from paths with suspected bottom bounces, while
“cleaned” data use corrected paths. No acoustic bounces were apparent in the Agate Pass data, but localizations
on land were “cleaned” (i.e., removed). SLBs are designated by number, with tracks from Agate Pass limited to
SLB 2 and SLB 3 for clarity. (b) and (d) show velocity computed from the smoothed acoustic position data (only
at locations with valid position data) as compared to the velocity computed from the GPS tracks.

unfavorable array geometry. We note that SLB to SLB connectivity was much lower than SLB to
µFloat connectivity when floats were deeper than 5 m, with 57% of distance estimates requiring a
bounce correction. Consequently, these errors should be interpreted as an upper bound on µFloat
localization errors.

Localization of the two grounded floats during Test 2 provided a measure of position uncertainty
in near-optimal SLB geometry. Uncertainty was 1.0 m, computed as the 68th percentile Euclidean
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Table 2. Localization errors for SLBs in Lake Washington and Agate Pass. 50th percentile position and
velocity errors (relative to GPS-derived position and velocity) for SLBs in Lake Washington and Agate
Pass. Nominal SLB speeds are provided for context. For Lake Washington data, “raw” error statistics
include localizations using paths with bottom interactions. “Cleaned” statistics use corrected path lengths.
No bounces were identified in Agate Pass. Subsequent filtering of the cleaned acoustic data produces
“smoothed” tracks. “GPS trilateration” errors are computed from localizations using GPS-based distances.

Lake Washington

Data Type Test 1 Test 2 Agate Pass

Position Error (m)

GPS trilateration 0.4 0.3 12.4
Raw 13.4 14.2 N/A
Cleaned 4.1 10.4 12.2
Smoothed 4.0 8.0 5.0

Velocity Error (m/s) Cleaned 0.08 0.14 4.4
Smoothed 0.008 0.020 0.035

Nominal Speed (m/s) 0.04 ± 0.03 m/s 0.07 ± 0.03 m/s 1.4 ± 0.7 m/s

distance between instantaneous position estimates and the median position while grounded, with an
approximately circular distribution. No pings received on the two grounded floats were suspected
of following an indirect path (i.e., no bottom bounce). This uncertainty is similar in magnitude
to GPS-trilateration accuracy and smaller than the accuracy of individual GPS position estimates
(±2.5 m). This suggests error due to clock-drift over the dive is negligible. This uncertainty can
be treated as the lower-bound on µFloat position accuracy for a single ping and, correspondingly,
the lower limit of horizontal spatial scales resolvable by the µFloats, barring appeal to other sensor
streams (e.g., the IMU). Based on these results, µFloat localization errors are likely to range from
1 to ∼10 m.

Assessment of velocity accuracy during Lake Washington tests was challenging, as SLB movement
was driven by light winds and their speeds were consequently low and variable. Nonetheless, the
velocities estimated from the smoothed acoustic position data generally match those computed from
GPS-positions (Figure 11b), with errors < 0.05 m/s. Errors in velocity computed from instantaneous
GPS-based trilaterations and cleaned but unsmoothed acoustic data are greater than the nominal
water velocity (Table 2) and omitted from the figure for clarity. As with position data, we expect
these errors to be an upper bound for measures of float velocity, given the lower connectivity rates
on SLBs relative to µFloats.

5. µFloat Array Demonstration
5.1. Field Deployment in Agate Pass, WA
The first full-scale scientific demonstration of the µFloat array was mapping horizontal water
velocities in Agate Pass, WA, a tidal channel approximately 10 m deep and 300 m wide, with
peak currents exceeding 1.5 m/s. On 20 August 2020, 20 floats were repeatedly deployed over an
ebb-flood tidal cycle with a total of 9 survey periods, each with a duration of approximately 20
minutes. An example of flood deployment is pictured in Figure 12.
µFloat settings and SLB arrangements were determined by the primary objective of volumetrically

characterizing the velocity field. Based on buoyancy control benchmarks from Lake Washington, a
velocity limit of 0.3 m/s was implemented on all floats, and floats were deployed roughly 60 m
upstream of the region of interest to allow time for initial piston retraction. For a given survey,
all floats were programmed to hold depth (depth targets varied from 1 to 10 m) or to repeatedly
profile from the surface to depth (maximum depths varied from 3 to 10 m). Similarly informed by
localization performance in Lake Washington, the following strategies were implemented in Agate
Pass to ensure consistent localization: (1) SLBs were deployed within 500 m of the floats; (2) the ping
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Figure 12. µFloat system deployment in Agate Pass during flood tide (a,c). Depth profiles of water density and
sound speed during the test interval (b). � and 6 mark the starting and final locations of the SLBs, respectively.
µFloats (grey dots in (c)) were deployed moving westward from SLB 3 to SLB 2 and followed trajectories similar
to the SLBs.

offset was reduced to 1 second to increase the position update rate; (3) we avoided maneuvering the
vessels near the floats to maximize SNR for localization pings. Auxiliary sensors on the µFloats were
identical to those described for Lake Washington tests. GoPros were oriented looking downward and
augmented with dive lights to survey the benthos, a rudimentary version of Roman et al. (2011).
During each deployment, water density and sound speed were measured midchannel, near the bridge
crossing (Xylem CastAway CTD), and revealed minimal gradients (Figure 12b).

5.2. Analysis of Distributed Array Deployment
While hydrodynamic mapping was the primary objective of the Agate Pass tests, we first processed
the data to investigate how µFloat system performance changed in an energetic environment. Float
dives were analyzed using the same process as was used for Lake Washington tests (Section 3.3)
to evaluate depth control performance. Due to the increased turbulence present in the channel,
floats experienced larger magnitude vertical deviations than in Lake Washington. Thus, the 0.25 m
tolerance threshold for defining the start of the settled period used in Lake Washington was relaxed
to 0.5 m for Agate Pass dives. Note that all depth-holding tracks were included in the analysis, but
profiling deployments were excluded.

Localization analysis followed the same process as Lake Washington tests. A comparison of GPS
and acoustic path lengths indicated no distinguishable bottom bounces, which is consistent with
the well-mixed, shallow (<10 m) nature of the channel, though differences between direct and
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indirect path lengths are much smaller in Agate Pass than Lake Washington due to the lower aspect
ratio (water depth versus horizontal distance). Analysis of localization accuracy in Agate Pass was
restricted to a single flood deployment pictured in Figure 12a.

For hydrodynamic mapping analysis, we assembled velocity data from all float tracks in the
example flood survey period into a 3D linear interpolation function. A comprehensive analysis
of velocity mapping and a comparison against other instruments (e.g., acoustic Doppler current
profilers) will be included in a forthcoming manuscript.

5.3. Results
Distributed array deployments in Agate Pass proved successful at mapping horizontal and vertical
gradients of tidal currents, as observed in Figure 13. By combining data along the trajectories of
18 floats (Figure 13a), we observe an exit jet—a narrow region of high flow velocity extending out
the southern mouth of the channel into the bay (Figure 13b). Vertical profiles are typical of open
channel flow (Figure 13d). Also, the quasi-Lagrangian behavior of the floats revealed interesting
secondary flow features, with three floats entrained in an eddy on the periphery of the exit jet
(Figure 13c).

System performance in Agate Pass was consistent with the quiescent benchmarks in Lake
Washington. Floats were able to reach and maintain depths on operationally practical time scales,

Figure 13. Horizontal velocity through Agate Pass during one flood tide survey. (a) depicts all float trajectories
colored by instantaneous horizontal velocity. (b) depicts horizontal current speed interpolated over a plane at 3
m depth. (c) details float motion in an eddy off the primary exit jet. Tracks end when the floats resurface. (d)
depicts the vertical structure of currents along the white line indicated in (b).
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though some performance degradation was observed (and expected) due to the increased turbulence
in the tidal channel relative to the quiescent lake. Settling time increased by about 10–20 s
(Figure 5a) and overshoot increased by 1 m on average (Figure 5b). Most significantly, the turbulence
increased depth-holding deviations (0.25–0.5 m).

Nanomodem connectivity fell between the two Lake Washington tests (Table 2). This follows
the trend of source-receiver distance dominating connectivity effects, as the average separation
distance during Agate Pass (∼350 m) split the two Lake Washington deployments (500 and 150 m).
Ambient noise in Agate Pass was only only marginally higher than in Lake Washington (80 dB in
the nanomodem communication band vs 75 dB). Similarly, smoothed position errors for SLBs in
Agate Pass fell between Lake Washington tests (Table 2), with 50% of position estimates within 5 m
of the GPS values. However, examining the unsmoothed estimates revealed a different primary error
source. SLB position errors based on trilaterated GPS-distances (12.4 m) were effectively equivalent
to acoustic errors (12.2 m). Thus, accuracy degradation was more likely caused by poor SLB array
configurations resulting from their freely drifting and converging paths rather than properties of
the acoustic environment. The faster currents in Agate Pass provided a better signal for evaluating
velocity accuracy and revealed 50th percentile velocity errors (0.04 m/s) that were less than 3% of
the nominal flow speed (1.4 m/s).

6. Discussion
6.1. Buoyancy Control
The µFloat buoyancy engine demonstrated robust and accurate depth control in both quiescent
and energetic environments, a prerequisite for maintaining vertical distributions when deployed in
arrays. The large buoyancy engine capacity easily accommodated external sensors (hydrophones
and GoPros), with only a rough re-ballasting (within ±50 g) required to accommodate the extra
weight and no adjustments to the controller necessary. The dynamics of floats with external sensors
were indistinguishable from bare floats. In theory, the buoyancy engine could tolerate a 3x increase
in float volume before losing the ability to accommodate an in situ density change from fresh
to salt water, though any additional drag would decrease profiling speed and potentially impact
operational strategies. For short-duration deployments in high-flow conditions, understanding the
µFloat’s transient control dynamics is critical to planning effective distributed array surveys.
Here, implementation of a speed limit on float vertical velocity was effective at preventing
undesirable overshoot and increasing the consistency of settling time across variably ballasted
floats.

Testing revealed two potential improvements to the µFloat dynamics: reducing float compress-
ibility and refining the software control algorithm. Due to the float being more compressible than
water, it requires constant piston movement to maintain depth and precludes isopycnal control
strategies except in strongly stratified environments. A stiffer housing material (e.g., aluminum)
could help reduce actuation requirements, albeit at increased unit cost. Additional drag surfaces
could also improve flow-following ability of the µFloat for applications where Lagrangian behavior
is particularly critical [e.g., mixing studies (D’Asaro et al., 1996; D’Asaro, 2003)]. Absent changes
in housing composition, incremental improvements to the control algorithm could reduce the
high-frequency motor action when diving and holding depth.

6.2. Localization
The nanomodem-based localization array proved to be a robust, accurate, and inexpensive solution
in quiescent and energetic environments. Nanomodem connectivity was sufficiently consistent to
provide regular position updates and permit accurate calculation of float velocity. While an
encouraging demonstration, the results suggest several areas of improvement, both in hardware
and software.
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In theory, the smallest time/length scales resolvable by the float are limited by float size [O(10)
cm] (D’Asaro et al., 1996; D’Asaro, 2003). In practice, resolution is limited by the update rate of the
localization system and the constituent error sources (e.g., GPS error, clock drift, array geometry).
Here, the strict scheduling required for nonoverlapping nanomodem messages restricted rates to
2 s in Lake Washington and 1 s in Agate Pass. Additionally, the variable nature of the acoustic
channel results in noisy and gappy data, requiring smoothing to produce physically realistic float
trajectories. A physics-informed filtering method (e.g., extended Kalman filter) could improve the
accuracy of smoothed tracks, but ultimately the time window used in any smoothing operation
will limit the resolvable motions (10–60 s). It may be possible to overcome this programmatic limit
by combining acoustic measurements with short periods of dead reckoning from IMU data (Caron
et al., 2006) and thus approach the physical limit defined by the float size.

The two primary sources of localization error observed were (1) variations in sound speed
and (2) poor SLB array geometry relative to receiving devices. The first was evident in Lake
Washington, where the thermocline severely degraded path length estimates. Sound speed variation
is a persistent challenge due to the variety of conditions exhibited in coastal waters. As such, errors
and potential corrections must be addressed on a case-by-case basis. The significance of unfavorable
SLB geometry was demonstrated in Agate Pass, where trilaterations using GPS-measured path
lengths performed no better than those using acoustic path lengths. This could be improved by
increasing the number of SLBs, mooring the SLBs, or actively manipulating SLB layout, either
manually or by equipping autonomous surface vehicles with nanomodems. While insignificant for
the short duration dives performed here, clock drift error may be an issue for longer dives. If so,
solutions include occasionally surfacing to re-sync with GPS timing or using different localization
algorithms [e.g., TDOA implemented by Neasham et al. (2021) or Bayesian methods employed by
Raggi (2019); Casagrande et al. (2019); Thomson et al. (2019)].

Finally, an inverse localization architecture, with floats pinging to SLBs, would enable real-time
monitoring of float positions. The directionality used here, with SLBs pinging floats, was dictated
by the nanomodem scheduling requirement: a round robin TDMA cycle for the five SLBs was four
times shorter than it would be for 20 floats pinging to the SLBs and thus provided the shortest
position update rate for the array. Fortunately, a new generation of the nanomodems (v3) features
binary-phased-shift-keyed signals permitting overlapping ping receptions and providing a 10-fold
increase in data rate, shorter pings, and improved error handing. Underwater GPS for an AUV has
already been demonstrated (Neasham et al., 2021), and upgrade of the µFloats with v3 modems is
currently underway.

6.2.1. Operations
µFloat operations proved straightforward and inexpensive. The sole vessel requirement was sufficient
deck space to fit equipment and minimal personnel (captain and up to two crew members). Both
µFloats and SLBs are lightweight and robust, permitting rapid deployment by a single crew member
(for example, see the Supplemental Materials). A second person was helpful for programming and
spotting floats. Float recovery was sometimes challenging due to the small form factor. The radio and
cellular relay of GPS locations proved essential to guide recovery vessels within visual distance, after
which retrieval with a boat hook was simple. Glare, wave action, and fog complicated float sighting
and recovery. For the Agate Pass test, the interval between recovery and redeployment ranged from
40 to 80 minutes and could be reduced further with operational practice or multiple recovery vessels.

Endurance of the µFloats is constrained by both the hotel load and the buoyancy engine. While
floats for open ocean applications prioritize energy efficiency for longevity, the µFloat system was
designed for short-term deployments (< 1 day) and prioritized cost-effectiveness and adaptability
over energy efficiency. The hotel load is approximately 4 W and average buoyancy engine loads
range between 3 and 4 W, resulting in a practical deployment endurance of about 12 hours.
Greater endurance could be achieved by redesigning the electronics suite around a lower power
microcontroller, reducing buoyancy engine actuation time, reducing float compressibility, and/or
improving drivetrain efficiency.
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6.3. Comparison to Other Floats
Through these benchmarking tests, we have demonstrated several advantages of the µFloat relative
to existing coastal floats. The most notable of these is cost: at $2.4k per float and $3k per surface
buoy, an array of 20 floats and 5 localization buoys costs ∼$65k. The M-AUEs are comparable
at $6k per float (Jules Jaffe, personal communication) but their smaller form factor reduces
buoyancy actuation. The second advantage is the µFloat’s comparatively large buoyancy engine (9%
actuation), which provides capacity for external sensors even in areas with sharp density gradients.
A recently developed high-capacity float (Gene Massion, personal communication) is similar at 8%
actuation and equipped with a suite of coastal oceanography instruments, but is much larger and
more expensive. The commercially produced ALAMO float (4.2% actuation) can similarly traverse
strong density gradients, but it is an order of magnitude more expensive. The third advantage of the
µFloat system is the nanomodem-based acoustic localization, which can provide position accuracy
approaching that of GPS, as well as the ability to send commands and data between floats and
the surface. While the M-AUE localization provides similar accuracy (±1.2 m) and longer range
(<5 km), the system is restricted to one-directional localization (Jaffe et al., 2017) and cannot be
used for general-purpose array coordination. Roman et al. utilizes ultrashort baseline localization
that has lower accuracy (±15 m) and shorter range (250–1000 m), but supports higher bandwidth
communications (14 kbit/s). Casagrande et al. (2019) recently investigated enhancements to these
floats via a terrain-based particle filter with visual odometry to improve positioning accuracy. The
RAFOS localization system (Rossby et al., 1986) used with Argo and MLF floats provides basin-scale
tracking (1400 km range, 1 km resolution) and is thus ill-suited for coastal-scale research. As such,
the nanomodem array provides an appropriate balance of range, accuracy, flexibility, and cost for
distributed sensor platforms in coastal environments. Lastly, the µFloat depth-holding accuracy (<
10 cm in quiescent water and < 50 cm in tidal flows) is matched only by Roman’s hybrid propulsion
approach (Snyder et al., 2018), albeit with slower dynamics.

The µFloat system does have several limitations. First, relative to other floats, the standard sensor
suite (pressure, temperature, and IMU) is minimal. At a similar cost, the M-AUE includes a satellite
modem for data transfer and recovery in regions without cellular networks, as well as a hydrophone
for acoustic monitoring, though motor noise causes significant contamination when changing or
holding depth [Jaffe et al. (2017); Jules Jaffe, personal communication]. The larger, more expensive
floats (ALAMO, D’Asaro, Roman) have hosted a variety of additional sensors (e.g., salinity, pH,
dissolved oxygen, acoustic Doppler velocimeters, and optical cameras). The µFloat’s expansion
capacity partially mitigates its sparse standard suite. As many sensors of interest (e.g., dissolved
oxygen, pH) are more expensive than the µFloat itself, cost will primarily scale with the number of
auxiliary sensors, and can be adjusted to the needs and budget of the end user. The second primary
limitation is endurance, with the µFloats constrained to short-duration (< 1 day) deployments.
The M-AUEs and Roman floats have similar endurance, but the ALAMO and D’Asaro floats are
better suited for studying long-duration phenomena. Third, only depth control has been robustly
demonstrated for the µFloat. Profiling (the primary Argo mode), isopycnal, and 3D Lagrangian
control (implemented by D’Asaro) are also desirable. Additional control modes include bottom-
tracking, as implemented on the Roman float for visual surveys of biological communities (Roman
et al., 2011; Snyder et al., 2018), and intermittent bottom-stationing, which was first demonstrated
by Langebrake et al. (2002) with an Argo-style float. Finally, true Lagrangian behavior is optimized
by reducing float size, and in this respect, the M-AUEs are superior.

6.4. Science Applications
While single drifting sensor packages provide considerable data of scientific interest, the µFloat
system was developed specifically for distributed array sensing. In the Agate Pass test, we demon-
strated three-dimensional mapping of tidal currents relevant to coastal oceanography in general and
to tidal energy resource extraction in particular (Blunden and Bahaj, 2007; Polagye and Thomson,

Field Robotics, March, 2023 · 3:516–543



538 · Harrison et al.

2013). Tidal energy sites are typically narrow (< 10 km across) and shallow (< 100 m deep) (Haas
et al., 2011), with fast currents (> 1.5 m/s) and strong gradients in both horizontal and vertical
directions that make navigation with propeller-driven AUVs impractical. The µFloats proved to be
an excellent platform for these environments, reaching target depths in an operationally practical
time frame, and maintaining target depth within 1 m in minimally or nonstratified water. When
conditions support robust connectivity, the localization system provides along-track resolution of
1–10 m, depending on acoustic ping rate and local water speed.

The µFloat system is also well-suited to observing tidal plumes, fronts, and tidal bores. These
systems have spatial extents on the order of 50 m to 5 km wide (Horner-Devine et al., 2015), with
dynamics evolving on tidal time scales (0.25–12 hours), matching the sensing scale and endurance
of the array. Density gradients in these regions can range from mild in well-mixed regions to nearly
step-changes between fresh and salt water across tidal bores—extreme conditions unmanageable
for previous floats but accommodated by the µFloat’s buoyancy engine. For example, an array of
µFloats instrumented with salinity sensors could volumetrically map salinity to improve salt flux
estimates (MacDonald et al., 2007; McCabe et al., 2008).

Hydrophone-equipped floats could be useful for studying underwater soundscapes, a critical
parameter for the health of many ecosystems (Duarte et al., 2021). While traditional acoustic
surveys use vertical or horizontal arrays of hydrophones (Wilson et al., 2013; Macaulay et al.,
2017), the µFloats would allow more flexible array configurations. Further, the Lagrangian nature
of the float should reduce flow-noise across the hydrophone element (Bassett et al., 2014; Gobat and
Grosenbaugh, 1997; Lighthill, 1954), improving fidelity of low-frequency noise measurements, though
this will require modifications to the µFloat design to minimize self-noise from motor actuation.

6.5. From Arrays to Swarms
Finally, it is worth commenting on our use of “distributed array” to describe the µFloat system.
Within the robotics literature, the µFloat system is best characterized as a multirobot system, a
broad category united by the characteristic that use of multiple robots is either necessary to achieve
the mission objective or provides significant performance improvement through adaptivity and fault
tolerance (Dudek et al., 1996; Cao et al., 1997; Iocchi et al., 2000). Here, the objective was to produce
3D maps of environmental variables. Success was not possible without simultaneous deployment of
multiple floats, an “array,” in a manner that provided sampling “distributed” across the region of
interest. The benefit of fault tolerance was observed in Agate Pass, where surveys were still successful
despite loss of data from one to four floats (through component malfunction or full float failure),
though more risk is associated with loss of an SLB due to the centralized communication topology
(fortunately not experienced in field tests).

While it is tempting to use the more widespread terminology of “swarm” [e.g., Jaffe et al. (2017)]
at present, the µFloats lack key swarm characteristics of decentralized control (Tan and Zheng,
2013; Navarro and Matía, 2013), coordination (Navarro and Matía, 2013), and scalability (Şahin,
2004). The floats are unaware of each other; the only “coordination” is performed by the human
operator preprogramming depths and determining deployment locations that provide the desired
spatial coverage; localization is centralized to the SLBs; and scalability is constrained by acoustic
communications. Nanomodems have a maximum reliable range of 1 km, require TDMA-management
of the communication channel, and are subject to ambient acoustic conditions. While the modems
provide the nascent capabilities of a “mobile sensor network,” the current implementation does not
qualify, as each float has a unique identification, the topology of the network is predetermined, and
there is no active routing of data through the network (Akyildiz et al., 2002).

Looking forward, the µFloat sits at the horizon line of both swarms and mobile sensor networks.
Environmentally aided navigation in which floats select target depths based on hydrodynamic
models of the local currents (Langebrake et al., 2002; Jouffroy et al., 2011; Huynh et al., 2014;
Smith and Huynh, 2014; Troesch et al., 2016) could enable low-level spatial coordination behaviors
such as aggregation and dispersion (Ota, 2006; Nedjah and Junior, 2019) or persistence in an
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energetic area of interest (higher-level coordination, like flocking or formation control, are not
generally feasible with floats due to the severe underactuation relative to the environment, though
specific flow structures like eddies may enable formation control on short time scales). Utilizing
the bidirectional nanomodem capabilities could enable field demonstrations of mobile underwater
wireless sensor networks (Akyildiz et al., 2002; Tan et al., 2011; Heidemann et al., 2012), though
scalability is ultimately limited by acoustic range (∼1 km) and desired position update rates. Such a
network would allow µFloats to share environmental information across the array, enabling real-time
coordination of float activity and adaptive sampling, thus qualifying as a robotic “swarm” (Şahin,
2004), or as near to as is possible for a system of floats and drifters. With improvements in system
endurance and co-deployment with other autonomous platforms, such as surface vehicles (Kimball
et al., 2014; Liu et al., 2016) for robotic management (e.g., recovery and redeployment), the µFloat
could become an integral part of coastal autonomous sampling networks (Curtin et al., 1993; Curtin
and Bellingham, 2009).

7. Conclusion
Understanding the health and dynamics of our coastal waterways is of vital importance. Obser-
vational platforms, both remote and in situ, are critical to this endeavor. This research expands
the suite of tools available to scientists studying coastal waters and their phenomena with the
introduction of the µFloat. The µFloat is an inexpensive ($2.4k) float with a high-capacity buoyancy
engine that enables float array sensing in coastal environments (< 100 m water depth). Fundamental
performance characteristics have been detailed: the buoyancy engine provides depth control within
±0.5 m, automatic ballasting from fresh to salt water, and accommodation of external sensors;
consistent underwater acoustic localization was demonstrated with a median position error of 5 m
at horizontal ranges <1 km; and the three-dimensional hydrodynamic mapping capability of an
array of 20 floats was demonstrated in a tidal channel with water speeds of 2 m/s. This work lays a
foundation for the continued use of float arrays toward exploring the dynamics, physical properties,
and soundscapes of our coastal waters.
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