Computer Science > Formal Languages and Automata Theory
[Submitted on 16 Nov 2021]
Title:Developing a Prototype of a Mechanical Ventilator Controller from Requirements to Code with ASMETA
View PDFAbstract:Rigorous development processes aim to be effective in developing critical systems, especially if failures can have catastrophic consequences for humans and the environment. Such processes generally rely on formal methods, which can guarantee, thanks to their mathematical foundation, model preciseness, and properties assurance. However, they are rarely adopted in practice. In this paper, we report our experience in using the Abstract State Machine formal method and the ASMETA framework in developing a prototype of the control software of the MVM (Mechanical Ventilator Milano), a mechanical lung ventilator that has been designed, successfully certified, and deployed during the COVID-19 pandemic. Due to time constraints and lack of skills, no formal method was applied for the MVM project. However, we here want to assess the feasibility of developing (part of) the ventilator by using a formal method-based approach. Our development process starts from a high-level formal specification of the system to describe the MVM main operation modes. Then, through a sequence of refined models, all the other requirements are captured, up to a level in which a C++ implementation of a prototype of the MVM controller is automatically generated from the model, and tested. Along the process, at each refinement level, different model validation and verification activities are performed, and each refined model is proved to be a correct refinement of the previous level. By means of the MVM case study, we evaluate the effectiveness and usability of our formal approach.
Submission history
From: EPTCS [view email] [via EPTCS proxy][v1] Tue, 16 Nov 2021 03:09:07 UTC (1,348 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.