Computer Science > Computer Vision and Pattern Recognition
[Submitted on 5 Dec 2023 (v1), last revised 28 Aug 2024 (this version, v3)]
Title:FERGI: Automatic Annotation of User Preferences for Text-to-Image Generation from Spontaneous Facial Expression Reaction
View PDF HTML (experimental)Abstract:Researchers have proposed to use data of human preference feedback to fine-tune text-to-image generative models. However, the scalability of human feedback collection has been limited by its reliance on manual annotation. Therefore, we develop and test a method to automatically score user preferences from their spontaneous facial expression reaction to the generated images. We collect a dataset of Facial Expression Reaction to Generated Images (FERGI) and show that the activations of multiple facial action units (AUs) are highly correlated with user evaluations of the generated images. We develop an FAU-Net (Facial Action Units Neural Network), which receives inputs from an AU estimation model, to automatically score user preferences for text-to-image generation based on their facial expression reactions, which is complementary to the pre-trained scoring models based on the input text prompts and generated images. Integrating our FAU-Net valence score with the pre-trained scoring models improves their consistency with human preferences. This method of automatic annotation with facial expression analysis can be potentially generalized to other generation tasks. The code is available at this https URL, and the dataset is also available at the same link for research purposes.
Submission history
From: Shuangquan Feng [view email][v1] Tue, 5 Dec 2023 23:33:49 UTC (5,693 KB)
[v2] Thu, 21 Mar 2024 19:14:04 UTC (6,259 KB)
[v3] Wed, 28 Aug 2024 10:00:01 UTC (11,758 KB)
Current browse context:
cs.CV
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.