Computer Science > Machine Learning
[Submitted on 30 Oct 2023 (v1), last revised 6 Dec 2023 (this version, v3)]
Title:From External to Swap Regret 2.0: An Efficient Reduction and Oblivious Adversary for Large Action Spaces
View PDFAbstract:We provide a novel reduction from swap-regret minimization to external-regret minimization, which improves upon the classical reductions of Blum-Mansour [BM07] and Stolz-Lugosi [SL05] in that it does not require finiteness of the space of actions. We show that, whenever there exists a no-external-regret algorithm for some hypothesis class, there must also exist a no-swap-regret algorithm for that same class. For the problem of learning with expert advice, our result implies that it is possible to guarantee that the swap regret is bounded by {\epsilon} after $\log(N)^{O(1/\epsilon)}$ rounds and with $O(N)$ per iteration complexity, where $N$ is the number of experts, while the classical reductions of Blum-Mansour and Stolz-Lugosi require $O(N/\epsilon^2)$ rounds and at least $\Omega(N^2)$ per iteration complexity. Our result comes with an associated lower bound, which -- in contrast to that in [BM07] -- holds for oblivious and $\ell_1$-constrained adversaries and learners that can employ distributions over experts, showing that the number of rounds must be $\tilde\Omega(N/\epsilon^2)$ or exponential in $1/\epsilon$.
Our reduction implies that, if no-regret learning is possible in some game, then this game must have approximate correlated equilibria, of arbitrarily good approximation. This strengthens the folklore implication of no-regret learning that approximate coarse correlated equilibria exist. Importantly, it provides a sufficient condition for the existence of correlated equilibrium which vastly extends the requirement that the action set is finite, thus answering a question left open by [DG22; Ass+23]. Moreover, it answers several outstanding questions about equilibrium computation and learning in games.
Submission history
From: Noah Golowich [view email][v1] Mon, 30 Oct 2023 17:50:29 UTC (328 KB)
[v2] Tue, 31 Oct 2023 17:57:22 UTC (332 KB)
[v3] Wed, 6 Dec 2023 07:34:24 UTC (345 KB)
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.