Computer Science > Information Retrieval
[Submitted on 20 Oct 2023]
Title:A Data-Centric Multi-Objective Learning Framework for Responsible Recommendation Systems
View PDFAbstract:Recommendation systems effectively guide users in locating their desired information within extensive content repositories. Generally, a recommendation model is optimized to enhance accuracy metrics from a user utility standpoint, such as click-through rate or matching relevance. However, a responsible industrial recommendation system must address not only user utility (responsibility to users) but also other objectives, including increasing platform revenue (responsibility to platforms), ensuring fairness (responsibility to content creators), and maintaining unbiasedness (responsibility to long-term healthy development). Multi-objective learning is a potent approach for achieving responsible recommendation systems. Nevertheless, current methods encounter two challenges: difficulty in scaling to heterogeneous objectives within a unified framework, and inadequate controllability over objective priority during optimization, leading to uncontrollable solutions.
In this paper, we present a data-centric optimization framework, MoRec, which unifies the learning of diverse objectives. MoRec is a tri-level framework: the outer level manages the balance between different objectives, utilizing a proportional-integral-derivative (PID)-based controller to ensure a preset regularization on the primary objective. The middle level transforms objective-aware optimization into data sampling weights using sign gradients. The inner level employs a standard optimizer to update model parameters with the sampled data. Consequently, MoRec can flexibly support various objectives while maintaining the original model intact. Comprehensive experiments on two public datasets and one industrial dataset showcase the effectiveness, controllability, flexibility, and Pareto efficiency of MoRec, making it highly suitable for real-world implementation.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.