Computer Science > Robotics
[Submitted on 21 Sep 2023 (v1), last revised 28 May 2024 (this version, v2)]
Title:A Vision-Based Navigation System for Arable Fields
View PDF HTML (experimental)Abstract:Vision-based navigation systems in arable fields are an underexplored area in agricultural robot navigation. Vision systems deployed in arable fields face challenges such as fluctuating weed density, varying illumination levels, growth stages and crop row irregularities. Current solutions are often crop-specific and aimed to address limited individual conditions such as illumination or weed density. Moreover, the scarcity of comprehensive datasets hinders the development of generalised machine learning systems for navigating these fields. This paper proposes a suite of deep learning-based perception algorithms using affordable vision sensors for vision-based navigation in arable fields. Initially, a comprehensive dataset that captures the intricacies of multiple crop seasons, various crop types, and a range of field variations was compiled. Next, this study delves into the creation of robust infield perception algorithms capable of accurately detecting crop rows under diverse conditions such as different growth stages, weed density, and varying illumination. Further, it investigates the integration of crop row following with vision-based crop row switching for efficient field-scale navigation. The proposed infield navigation system was tested in commercial arable fields traversing a total distance of 4.5 km with average heading and cross-track errors of 1.24° and 3.32 cm respectively.
Submission history
From: Rajitha de Silva [view email][v1] Thu, 21 Sep 2023 12:01:59 UTC (2,641 KB)
[v2] Tue, 28 May 2024 09:07:38 UTC (14,111 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.