Computer Science > Data Structures and Algorithms
[Submitted on 3 Jul 2023]
Title:Learning Mixtures of Gaussians Using the DDPM Objective
View PDFAbstract:Recent works have shown that diffusion models can learn essentially any distribution provided one can perform score estimation. Yet it remains poorly understood under what settings score estimation is possible, let alone when practical gradient-based algorithms for this task can provably succeed.
In this work, we give the first provably efficient results along these lines for one of the most fundamental distribution families, Gaussian mixture models. We prove that gradient descent on the denoising diffusion probabilistic model (DDPM) objective can efficiently recover the ground truth parameters of the mixture model in the following two settings: 1) We show gradient descent with random initialization learns mixtures of two spherical Gaussians in $d$ dimensions with $1/\text{poly}(d)$-separated centers. 2) We show gradient descent with a warm start learns mixtures of $K$ spherical Gaussians with $\Omega(\sqrt{\log(\min(K,d))})$-separated centers. A key ingredient in our proofs is a new connection between score-based methods and two other approaches to distribution learning, the EM algorithm and spectral methods.
Current browse context:
cs.DS
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.