Computer Science > Computer Vision and Pattern Recognition
[Submitted on 5 Apr 2023]
Title:Recovering Continuous Scene Dynamics from A Single Blurry Image with Events
View PDFAbstract:This paper aims at demystifying a single motion-blurred image with events and revealing temporally continuous scene dynamics encrypted behind motion blurs. To achieve this end, an Implicit Video Function (IVF) is learned to represent a single motion blurred image with concurrent events, enabling the latent sharp image restoration of arbitrary timestamps in the range of imaging exposures. Specifically, a dual attention transformer is proposed to efficiently leverage merits from both modalities, i.e., the high temporal resolution of event features and the smoothness of image features, alleviating temporal ambiguities while suppressing the event noise. The proposed network is trained only with the supervision of ground-truth images of limited referenced timestamps. Motion- and texture-guided supervisions are employed simultaneously to enhance restorations of the non-referenced timestamps and improve the overall sharpness. Experiments on synthetic, semi-synthetic, and real-world datasets demonstrate that our proposed method outperforms state-of-the-art methods by a large margin in terms of both objective PSNR and SSIM measurements and subjective evaluations.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.