Computer Science > Computational Geometry
[Submitted on 28 Feb 2023]
Title:Crossing Minimization in Time Interval Storylines
View PDFAbstract:Storyline visualizations are a popular way of visualizing characters and their interactions over time: Characters are drawn as x-monotone curves and interactions are visualized through close proximity of the corresponding character curves in a vertical strip. Existing methods to generate storylines assume a total ordering of the interactions, although real-world data often do not contain such a total order. Instead, multiple interactions are often grouped into coarser time intervals such as years. We exploit this grouping property by introducing a new model called storylines with time intervals and present two methods to minimize the number of crossings and horizontal space usage. We then evaluate these algorithms on a small benchmark set to show their effectiveness.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.