Computer Science > Information Retrieval
[Submitted on 17 Oct 2022]
Title:A GPU-specialized Inference Parameter Server for Large-Scale Deep Recommendation Models
View PDFAbstract:Recommendation systems are of crucial importance for a variety of modern apps and web services, such as news feeds, social networks, e-commerce, search, etc. To achieve peak prediction accuracy, modern recommendation models combine deep learning with terabyte-scale embedding tables to obtain a fine-grained representation of the underlying data. Traditional inference serving architectures require deploying the whole model to standalone servers, which is infeasible at such massive scale.
In this paper, we provide insights into the intriguing and challenging inference domain of online recommendation systems. We propose the HugeCTR Hierarchical Parameter Server (HPS), an industry-leading distributed recommendation inference framework, that combines a high-performance GPU embedding cache with an hierarchical storage architecture, to realize low-latency retrieval of embeddings for online model inference tasks. Among other things, HPS features (1) a redundant hierarchical storage system, (2) a novel high-bandwidth cache to accelerate parallel embedding lookup on NVIDIA GPUs, (3) online training support and (4) light-weight APIs for easy integration into existing large-scale recommendation workflows. To demonstrate its capabilities, we conduct extensive studies using both synthetically engineered and public datasets. We show that our HPS can dramatically reduce end-to-end inference latency, achieving 5~62x speedup (depending on the batch size) over CPU baseline implementations for popular recommendation models. Through multi-GPU concurrent deployment, the HPS can also greatly increase the inference QPS.
Submission history
From: Matthias Langer PhD [view email][v1] Mon, 17 Oct 2022 07:36:18 UTC (325 KB)
Current browse context:
cs.IR
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.