Computer Science > Neural and Evolutionary Computing
[Submitted on 24 Jul 2022]
Title:Hyperdimensional Computing vs. Neural Networks: Comparing Architecture and Learning Process
View PDFAbstract:Hyperdimensional Computing (HDC) has obtained abundant attention as an emerging non von Neumann computing paradigm. Inspired by the way human brain functions, HDC leverages high dimensional patterns to perform learning tasks. Compared to neural networks, HDC has shown advantages such as energy efficiency and smaller model size, but sub-par learning capabilities in sophisticated applications. Recently, researchers have observed when combined with neural network components, HDC can achieve better performance than conventional HDC models. This motivates us to explore the deeper insights behind theoretical foundations of HDC, particularly the connection and differences with neural networks. In this paper, we make a comparative study between HDC and neural network to provide a different angle where HDC can be derived from an extremely compact neural network trained upfront. Experimental results show such neural network-derived HDC model can achieve up to 21% and 5% accuracy increase from conventional and learning-based HDC models respectively. This paper aims to provide more insights and shed lights on future directions for researches on this popular emerging learning scheme.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.