Computer Science > Computer Vision and Pattern Recognition
[Submitted on 20 Jul 2022]
Title:EASNet: Searching Elastic and Accurate Network Architecture for Stereo Matching
View PDFAbstract:Recent advanced studies have spent considerable human efforts on optimizing network architectures for stereo matching but hardly achieved both high accuracy and fast inference speed. To ease the workload in network design, neural architecture search (NAS) has been applied with great success to various sparse prediction tasks, such as image classification and object detection. However, existing NAS studies on the dense prediction task, especially stereo matching, still cannot be efficiently and effectively deployed on devices of different computing capabilities. To this end, we propose to train an elastic and accurate network for stereo matching (EASNet) that supports various 3D architectural settings on devices with different computing capabilities. Given the deployment latency constraint on the target device, we can quickly extract a sub-network from the full EASNet without additional training while the accuracy of the sub-network can still be maintained. Extensive experiments show that our EASNet outperforms both state-of-the-art human-designed and NAS-based architectures on Scene Flow and MPI Sintel datasets in terms of model accuracy and inference speed. Particularly, deployed on an inference GPU, EASNet achieves a new SOTA 0.73 EPE on the Scene Flow dataset with 100 ms, which is 4.5$\times$ faster than LEAStereo with a better quality model.
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.