Computer Science > Graphics
[Submitted on 12 Jun 2022 (v1), last revised 20 Jun 2022 (this version, v2)]
Title:TileGen: Tileable, Controllable Material Generation and Capture
View PDFAbstract:Recent methods (e.g. MaterialGAN) have used unconditional GANs to generate per-pixel material maps, or as a prior to reconstruct materials from input photographs. These models can generate varied random material appearance, but do not have any mechanism to constrain the generated material to a specific category or to control the coarse structure of the generated material, such as the exact brick layout on a brick wall. Furthermore, materials reconstructed from a single input photo commonly have artifacts and are generally not tileable, which limits their use in practical content creation pipelines. We propose TileGen, a generative model for SVBRDFs that is specific to a material category, always tileable, and optionally conditional on a provided input structure pattern. TileGen is a variant of StyleGAN whose architecture is modified to always produce tileable (periodic) material maps. In addition to the standard "style" latent code, TileGen can optionally take a condition image, giving a user direct control over the dominant spatial (and optionally color) features of the material. For example, in brick materials, the user can specify a brick layout and the brick color, or in leather materials, the locations of wrinkles and folds. Our inverse rendering approach can find a material perceptually matching a single target photograph by optimization. This reconstruction can also be conditional on a user-provided pattern. The resulting materials are tileable, can be larger than the target image, and are editable by varying the condition.
Submission history
From: Xilong Zhou [view email][v1] Sun, 12 Jun 2022 03:32:05 UTC (33,386 KB)
[v2] Mon, 20 Jun 2022 03:22:52 UTC (33,388 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.