Computer Science > Computer Vision and Pattern Recognition
[Submitted on 23 May 2022 (v1), last revised 19 Jul 2023 (this version, v5)]
Title:Super Vision Transformer
View PDFAbstract:We attempt to reduce the computational costs in vision transformers (ViTs), which increase quadratically in the token number. We present a novel training paradigm that trains only one ViT model at a time, but is capable of providing improved image recognition performance with various computational costs. Here, the trained ViT model, termed super vision transformer (SuperViT), is empowered with the versatile ability to solve incoming patches of multiple sizes as well as preserve informative tokens with multiple keeping rates (the ratio of keeping tokens) to achieve good hardware efficiency for inference, given that the available hardware resources often change from time to time. Experimental results on ImageNet demonstrate that our SuperViT can considerably reduce the computational costs of ViT models with even performance increase. For example, we reduce 2x FLOPs of DeiT-S while increasing the Top-1 accuracy by 0.2% and 0.7% for 1.5x reduction. Also, our SuperViT significantly outperforms existing studies on efficient vision transformers. For example, when consuming the same amount of FLOPs, our SuperViT surpasses the recent state-of-the-art (SOTA) EViT by 1.1% when using DeiT-S as their backbones. The project of this work is made publicly available at this https URL.
Submission history
From: Mingbao Lin [view email][v1] Mon, 23 May 2022 15:42:12 UTC (3,261 KB)
[v2] Thu, 26 May 2022 02:50:57 UTC (3,262 KB)
[v3] Wed, 26 Apr 2023 08:24:33 UTC (3,368 KB)
[v4] Wed, 10 May 2023 12:19:17 UTC (3,522 KB)
[v5] Wed, 19 Jul 2023 08:25:37 UTC (3,522 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.