Computer Science > Sound
[Submitted on 5 Apr 2022 (v1), last revised 8 Apr 2022 (this version, v2)]
Title:Audio-visual multi-channel speech separation, dereverberation and recognition
View PDFAbstract:Despite the rapid advance of automatic speech recognition (ASR) technologies, accurate recognition of cocktail party speech characterised by the interference from overlapping speakers, background noise and room reverberation remains a highly challenging task to date. Motivated by the invariance of visual modality to acoustic signal corruption, audio-visual speech enhancement techniques have been developed, although predominantly targeting overlapping speech separation and recognition tasks. In this paper, an audio-visual multi-channel speech separation, dereverberation and recognition approach featuring a full incorporation of visual information into all three stages of the system is proposed. The advantage of the additional visual modality over using audio only is demonstrated on two neural dereverberation approaches based on DNN-WPE and spectral mapping respectively. The learning cost function mismatch between the separation and dereverberation models and their integration with the back-end recognition system is minimised using fine-tuning on the MSE and LF-MMI criteria. Experiments conducted on the LRS2 dataset suggest that the proposed audio-visual multi-channel speech separation, dereverberation and recognition system outperforms the baseline audio-visual multi-channel speech separation and recognition system containing no dereverberation module by a statistically significant word error rate (WER) reduction of 2.06% absolute (8.77% relative).
Submission history
From: Guinan Li [view email][v1] Tue, 5 Apr 2022 04:16:03 UTC (2,212 KB)
[v2] Fri, 8 Apr 2022 08:07:05 UTC (2,212 KB)
Current browse context:
cs.SD
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.