Computer Science > Computer Science and Game Theory
[Submitted on 22 Mar 2022 (v1), last revised 7 Oct 2022 (this version, v2)]
Title:Optimistic Mirror Descent Either Converges to Nash or to Strong Coarse Correlated Equilibria in Bimatrix Games
View PDFAbstract:We show that, for any sufficiently small fixed $\epsilon > 0$, when both players in a general-sum two-player (bimatrix) game employ optimistic mirror descent (OMD) with smooth regularization, learning rate $\eta = O(\epsilon^2)$ and $T = \Omega(\text{poly}(1/\epsilon))$ repetitions, either the dynamics reach an $\epsilon$-approximate Nash equilibrium (NE), or the average correlated distribution of play is an $\Omega(\text{poly}(\epsilon))$-strong coarse correlated equilibrium (CCE): any possible unilateral deviation does not only leave the player worse, but will decrease its utility by $\Omega(\text{poly}(\epsilon))$. As an immediate consequence, when the iterates of OMD are bounded away from being Nash equilibria in a bimatrix game, we guarantee convergence to an exact CCE after only $O(1)$ iterations. Our results reveal that uncoupled no-regret learning algorithms can converge to CCE in general-sum games remarkably faster than to NE in, for example, zero-sum games. To establish this, we show that when OMD does not reach arbitrarily close to a NE, the (cumulative) regret of both players is not only negative, but decays linearly with time. Given that regret is the canonical measure of performance in online learning, our results suggest that cycling behavior of no-regret learning algorithms in games can be justified in terms of efficiency.
Submission history
From: Ioannis Anagnostides [view email][v1] Tue, 22 Mar 2022 22:07:56 UTC (483 KB)
[v2] Fri, 7 Oct 2022 00:16:11 UTC (485 KB)
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.