Computer Science > Neural and Evolutionary Computing
[Submitted on 4 Sep 2024]
Title:Sorbet: A Neuromorphic Hardware-Compatible Transformer-Based Spiking Language Model
View PDF HTML (experimental)Abstract:For reasons such as privacy, there are use cases for language models at the edge. This has given rise to small language models (SLMs) targeted for deployment in resource-constrained devices where energy efficiency is a significant concern. Spiking neural networks (SNNs) offer a promising solution due to their energy efficiency, and there are already works on realizing transformer-based models on SNNs. However, key operations like softmax and layer normalization (LN) are difficult to implement on neuromorphic hardware, and many of these early works sidestepped them. To address these challenges, we introduce Sorbet, a transformer-based spiking language model that is more neuromorphic hardware-compatible. Sorbet incorporates a novel shifting-based softmax called PTsoftmax and a power normalization method using bit-shifting (BSPN), both designed to replace the respective energy-intensive operations. By leveraging knowledge distillation and model quantization, Sorbet achieved a highly compressed binary weight model that maintains competitive performance while significantly reducing energy consumption. We validate Sorbet's effectiveness through extensive testing on the GLUE benchmark and a series of ablation studies, demonstrating its potential as an energy-efficient solution for language model inference.
Current browse context:
cs.NE
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.