Computer Science > Machine Learning
[Submitted on 16 Sep 2024]
Title:Structure-preserving learning for multi-symplectic PDEs
View PDF HTML (experimental)Abstract:This paper presents an energy-preserving machine learning method for inferring reduced-order models (ROMs) by exploiting the multi-symplectic form of partial differential equations (PDEs). The vast majority of energy-preserving reduced-order methods use symplectic Galerkin projection to construct reduced-order Hamiltonian models by projecting the full models onto a symplectic subspace. However, symplectic projection requires the existence of fully discrete operators, and in many cases, such as black-box PDE solvers, these operators are inaccessible. In this work, we propose an energy-preserving machine learning method that can infer the dynamics of the given PDE using data only, so that the proposed framework does not depend on the fully discrete operators. In this context, the proposed method is non-intrusive. The proposed method is grey box in the sense that it requires only some basic knowledge of the multi-symplectic model at the partial differential equation level. We prove that the proposed method satisfies spatially discrete local energy conservation and preserves the multi-symplectic conservation laws. We test our method on the linear wave equation, the Korteweg-de Vries equation, and the Zakharov-Kuznetsov equation. We test the generalization of our learned models by testing them far outside the training time interval.
Current browse context:
cs.LG
References & Citations
Bibliographic and Citation Tools
Bibliographic Explorer (What is the Explorer?)
Connected Papers (What is Connected Papers?)
Litmaps (What is Litmaps?)
scite Smart Citations (What are Smart Citations?)
Code, Data and Media Associated with this Article
alphaXiv (What is alphaXiv?)
CatalyzeX Code Finder for Papers (What is CatalyzeX?)
DagsHub (What is DagsHub?)
Gotit.pub (What is GotitPub?)
Hugging Face (What is Huggingface?)
Papers with Code (What is Papers with Code?)
ScienceCast (What is ScienceCast?)
Demos
Recommenders and Search Tools
Influence Flower (What are Influence Flowers?)
CORE Recommender (What is CORE?)
IArxiv Recommender
(What is IArxiv?)
arXivLabs: experimental projects with community collaborators
arXivLabs is a framework that allows collaborators to develop and share new arXiv features directly on our website.
Both individuals and organizations that work with arXivLabs have embraced and accepted our values of openness, community, excellence, and user data privacy. arXiv is committed to these values and only works with partners that adhere to them.
Have an idea for a project that will add value for arXiv's community? Learn more about arXivLabs.